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ABSTRACT

Testing A Theory 
On Turbulent Flow Near Smooth and Rough Walls

by

Kyung-Soo Jang 

Advisor 

Gabriel A. Oyibo

Submitted in Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy (Aeronautics & Astronautics)

January 1994

A theoretical analysis and turbulence modelling for the flow near smooth and rough 

walls is presented.

In Chapter 2 of this thesis, a theoretical analysis which will yield a continuous velo

city and shear distribution for turbulent flow near smooth, transitionally rough and fully 

rough walls is described. This analysis introduces a new roughness parameter Cj whose 

value determines velocity profiles and shear distributions which represent turbulent flow 

near smooth, transitionally rough and fully rough walls. The expressions developed for 

the velocity and shear stress are compared with those of van Driest and available experi

mental data.

In Chapter 3, the algebraic turbulence model obtained in Chapter 2 is implemented 

within a newly developed computational code which solves the fully elliptic time- 

averaged Reynolds transport equations. A developing turbulent flow in a pipe is selected 

for a test problem. The developing mean velocity and near-wall variations of tur

bulence
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properties in the fully developed region are demonstrated and compared with van Driest’s 

theory and available experimental data.

In Chapter 4, a computational code to solve fully elliptic Reynolds-averaged momen

tum equations are combined with a newly developed low-Reynolds number k-z  two equa

tion turbulence model is developed and solved for the developing turbulent flow in a pipe. 

Two computational/roughness parameters Cy and Aq are introduced into the damping fac

tor o f the damping function in a low-Reynolds number k -e turbulence model. This new 

low-Reynolds number turbulence model also predicts the variations of the turbulence pro

perties for the flow near smooth, transitionally rough and fully rough walls. The com

putational results are compared with van Driest’s theory and experimental data.

Using the theory described, an algebraic turbulence model and a low-Reynolds 

number k -z  two equation model a developing turbulent flow in a pipe is tested. The 

discretized governing equations are simultaneously solved for all flow variables {U ,V  J* 

for algebraic model and U,VJP,k  and e for k-z  two equation model) using a line-by-line 

marching iterative solution technique for streamwise distances up to 100 pipe diameters 

for several bulk Reynolds numbers.
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Chapter 1

INTRODUCTION

1. INTRODUCTION

The fluid flow passing through many engineering systems of practical interest is 

turbulent. Turbulence in fluid flow has some statistical or non-deterministic charac

teristics. Such statistical characteristics of turbulent flow variables may be 

represented by two components, namely the mean quantity and the fluctuating quantity. 

When the time-averaged Reynolds transport equations are used to describe turbulent 

flows some of the important information about the dynamics of turbulence is lost and 

the number o f unknown variables exceeds the number of equations to be solved. In 

order to provide the necessary closure to the governing equations, relations between 

the Reynolds-stresses and the mean velocity components have to be prescribed. The 

type of turbulence modelling depends on the assumption made to describe the 

Reynolds-stress tensor. In general it can be divided into two categories. The first one 

follows the turbulent or eddy viscosity concept proposed by Boussinesq in order to 

mimic the laminar flow analysis. The second one uses additional transport equations
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with the Reynolds-stresses themselves as dependent variables. The applications and 

limitations for the representative models in each category are briefly described below.

1.1 Eddy Viscosity Model

Since Boussinesq^ described the gradient transport idea many engineers have used 

it. It assumes that the Reynolds-stresses can be related to the mean velocity gradient 

via a turbulent or eddy viscosity:

-p u  V
dû  ^  
dy dx (1.1)

Therefore this type of turbulence model relates the turbulent stress to the mean rate of 

strain in a manner similar to the relationship between the stress and the rate of strain 

in laminar flow.

1.1.1 Zero Equation Model

One of the simplest and most successful models of the zero equation models is 

the one based on the Prandtl’s mixing length theory^, which relates the turbulent vicos- 

ity to a mixing length multiplied by the mean velocity gradient.

\i(=pl dû
dy

(1.2)

where a mixing length, / ,  is a characteristic length scale of turbulence and is specified 

as an algebraic function of local flow properties. PrandtTs development led to the 

result that the mixing length is proportional to the distance in the transverse direction,

y

/ = A T y ,  AT =0.41 (1.3)
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Its applications are confined to simple flows where the turbulence is influenced by 

the local properties o f the velocity field. This model implies that turbulence is in 

local equilibrium throughout the flow field which means that the dissipation and pro

duction o f turbulent energy are the same at each point in the flow. It also requires the 

turbulent viscosity to be zero whenever the mean velocity gradient is zero, which is 

not true under all circumstances. Therefore the mixing length hypothesis cannot 

account for all the transport and history effects of turbulence. The mixing length is 

obtained through empirical correlations only.

1.1.2 One Equation Model

The deficiency of the mixing length model can be corrected by introducing a tran

sport process partial differential equation. These "one equation" models are the sim

plest ones accounting for the transport and history effects of turbulence. An addi

tional partial differential equation is provided which relates the transport of turbulent 

kinetic energy to the turbulent velocity scale. The model uses the eddy viscosity con

cept, together with dimensional analysis to obtain the so-called Kolmogorov^-Prandtl^ 

expression.

(1.4)

where the turbulent kinetic energy k is defined by:

/:=y(M'^+v'^+w'^) (1.5)

and m'^, and are the components of normal intensities in each direction. The 

turbulent viscosity no longer becomes zero when the mean velocity gradient is zero. 

In this model, as in the zero equation model, the mixing length is evaluated by an 

algebraic expression which depends only on the local flow parameters. In general the
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application of the one equation model is limited to simple shear layer flows and the 

result often does not show an improvement over a zero equation model.

1.1.3 Two Equation Model

Two equation models involve an additional transport equation which provides the 

turbulence mixing length. Among two equation models, the k -z  two equation model 

using a transport equation for the turbulent kinetic energy and one for the dissipation 

rate of the turbulent kinetic energy has become the most popular because the dissipa

tion rate equation requires no extra terms near the wall. The dissipation rate o f tur

bulent kinetic energy £ is defined as:

6 = - ^  (1.6)

And the dimensional analysis of Prandtl and Kolmogorov defines the turbulent viscos

ity as:

where is an empirical constant usually given by 0.09. Many engineers and scien

tists have made computations using these turbulence models for solving complex tur

bulent flows and in many instances obtained good comparisons with experimental data.

1.2 Reynolds-Stress Model

Even though the k-z  two equation model is still used for solving complex tur

bulent flows in many engineering applications higher order closure models are neces

sary to get more realistic results. Experimental evidence shows that the linear relation 

between the Reynolds-stress and the mean rate of strain is inaccurate and that the 

assumption of a scalar turbulent viscosity cannot be expected to be universally valid. 

Analysis o f such cases requires the solution of the Reynolds-stress equations where the
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Reynolds-stresses themselves are dependent variables of partial differential equations. 

Such modelling requires the solution o f three or more transport equations in addition to 

the time-averaged momentum and continuity equations. Although complicated and 

tedious they can be potentially more useful and less problem dependent. To date 

these models have been used as turbulence research tools and are still under develop

ment.

For the calculation of turbulent stresses and heat fluxes in incompressible flow 

Rodi*̂  described some of the available models and presented typical examples of calcu

lations relevant to aerospace problems. Marvin^ broadly reviewed the status of tur

bulence modelling for computational aerodynamics and discussed the performance of 

different models in various compressible flow problems. The two equation models 

seem to perform better for separated flows especially in the recovering regions down

stream.

1.3 Near-Wall Turbulence Modelling

1.3.1 Turbulence Modelling Near Smooth Walls

In the region very close to the wall the magnitude of turbulent viscosity dimin

ishes and becomes comparable with the laminar viscosity. Thus, a more detailed 

hypothesis for is needed to account for the region near the wall. The hypothesis 

for this region is especially important, because very steep gradients of mean velocity 

and other turbulent variables exist near a wall, and also because the shear stress and 

fluxes at the wall are of great practical interest. There are many versions of models for 

the turbulent viscosity near a smooth wall. Most of them come from the universal 

logarithmic velocity distribution law of the wall and an assumption of uniform shear 

stress. All such expressions have been designed in accordance with the experimental 

data in the absence of pressure gradient, non-uniform fluid properties and mass transfer
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at the wall. Several authors(Reichardt^, van Driest^ and Deissler^) have suggested velo

city profiles which vary smoothly and fit better to experiments in such cases.

For higher order near-wall turbulence models the Reynolds-stress transport equa- 

tions^“^̂ , which are closed by either using wall functions or introducing a wall effect 

into the pressure-strain terms, have more flexible applications than others. However 

their ability to predict near-wall Reynolds-stresses are not quite as good as those of  

two equation models^^^^. These higher order models require more transport equa

tions to be solved, which are either very expensive to calculate or often exceed the 

limits of computers. The k~z two equation model^^’̂  ̂ is one of the most popular 

among those in the two equation model family but its usage is limited only to the fully 

turbulent region in which the Reynolds number is sufficiently high, so that the eddy 

viscosity can be assumed to be isotropic. This requires an empirical wall function^^ to 

bridge the region between the wall and the fully turbulent region away from the wall, 

in which the most significant variations of turbulence properties occur. Low-Reynolds 

number k-z  two equation models eliminate the need for wall functions and model the 

turbulent viscosity directly to account the existence of the wall.

Patel, Rodi and Scheuerer^® extensively tested eight different two equation, low- 

Reynolds number turbulence models to compare their ability to predict the near-wall 

behavior of turbulence properties. It was concluded in their studies that the models of  

Launder and Sharma^\ Chien^^ and Lam and Bremhorst^, which are based on k-z  

model, and that o f Wilcox and Rubesin^^, which is based on k-w  model yield compar

able results and perform considerably better than the others.

1.3.2 Turbulence Modelling Near Rough Walls

Many practical engineering structures cannot be regarded as being hydraulically 

or aerodynamically smooth. The resistance to flow caused by the existence of rough 

surfaces is generally larger than that obtained by the smooth wall approximation.
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Therefore experiments of such flows began very early 25-30̂  A comprehensive 

review of the numerous earlier experimental results is made by Hopf^^. Systematic and 

extensive measurements on rough pipes have been performed by Nikuradse^®, who 

focused on the behavior of turbulent flow on the rough walls by measuring pressure 

drop and velocity profiles in pipes roughened with tightly glued sandgrains. In experi

ments using a rectangular channel with the upper surface roughened and the other 

sides smooth, Schlichting^^ first proposed the equivalent sandgrain roughness con

cept, which is related to the size of the sandgrain in Nikuradse’s experiment. The 

equivalent sandgrain roughness of Schlichting was used to relate his skin friction 

results to the results obtained by Nikuradse for the sand roughened pipes. Schlichting 

divided the wall roughness into three regimes, i.e. the hydraulically smooth, the transi

tionally rough and the completely rough regimes:

0<k* <5 hydraulically smooth

5<k*<nO transitionally rough (1.8)

k* >70 completely rough

where the roughness Reynolds number k* is defined by the friction velocity 

equivalent sandgrain size k̂  and kinematic viscosity of fluid v.

Using experimental data the relation between the resistance formula and the velo

city distribution, which was found earlier in the case o f smooth pipes, could be 

extended to the case of rough pipes. But the theoretical approach to the laws of fric

tion for rough pipes is frustrated by the large number of parameters describing rough

ness due to the diversity of geometric forms.

In general there are two approaches which have been used in formulating the 

required roughness models: the classic equivalent sandgrain roughness approach and 

the discrete element approach. The problem using the equivalent sandgrain roughness 

approach is determining the roughness Reynolds number k* for a specific surface of 

interest so that Nikuradse’s experimental data can be used. Bettermann^^, Dvorak^^,
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Simpson^" ,̂ Dirling^^, Dalle Donne and Meyer^^ used the equivalent sandgrain concept 

to correlate the roughness on the wall. Later, Schlichting’s roughness experiment was 

re-evaluated by Coleman, Hodge and Taylor^^. They showed that the original skin 

friction coefficients are higher than their corrected values by amounts ranging from 0.5 

to 73 percent, while the original equivalent sand roughness values are higher than their 

corrected ones by 26 to 555 percent. Sigal and Danberg^^ used the corrected data to 

correlate the roughness density effect on the turbulent boundary layer flow. The 

equivalent sandgrain roughness concept has been used in predicting turbulence through 

modeling methods such as integral methods and differential (finite difference) methods. 

The integral methods generally account for roughness through modified velocity 

profiles, together with skin-ffiction and Stanton number correlations based on the 

sandgrain roughness Reynolds number (Bettermann^^, Dvorak^^, Simpson^" ,̂ Dirling^^, 

Dalle Donne and Meyer^^, Koh^^). Differential methods use modified eddy viscosity 

formulations to account for surface roughness, based on the equivalent sandgrain 

roughness (Healzer"̂ ®, Cebeci and Chang"^\ Ligrani"^ )̂.

Another approach to the modelling problem to account the roughness effects is 

the discrete element method, in which the effects of a collection of individual rough

ness elements on the flow are generally considered by including a form drag in the 

momentum equation and accounting for the blockage effect of roughness elements on 

the flow. In the same paper in which Schlichting introduced the equivalent sandgrain 

roughness concept, he proposed that the flow resistance of a rough surface be divided 

into two components: that due to the form drag on the roughness elements and that 

due to the viscous shear on the smooth surface area between the roughness elements. 

Some investigators have used this method coupled with influences on the turbulence 

model(Hodge and Adams"^ ,̂ Lin and Bywater"^, Christoph and Pletcher"^ )̂. Others (Fin- 

son and Wu"̂ ,̂ Finson and Clark"̂ ,̂ Finson"^ ,̂ Taylor, Coleman and Hodge"^ ’̂̂ ®, Hosni, 

Colemann and Taylor^\ Scaggs, Taylor and Coleman^^) have used the discrete element 

approach in a manner in which there is no dependence on the equivalent sandgrain
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roughness concept.

In the present study the effects of wall roughness are considered by introducing a 

roughness parameter into the damping function originated by van Driest^.

1.4 Computational Techniques

One representative numerical method for solving steady state transport equations 

is the SIMPLE(Semi-Implicit Method for Pressure-Linked Equations) algorithm^^. It 

uses a form of the relaxation method and a segregated solution technique in which the 

pressure and velocity fields are solved separately. Since Patankar and Spalding first 

described the SIMPLE algorithm to solve the parabolized Navier-Stokes equations it 

has been continually developed for over a decade, yielding many versions:

i)SIMPLER^" ,̂ FIMOSE^^ etc., depending on the method of updating the pressure

ii)QUICK^^, QUICKER^^, etc., depending on the difference scheme used to discretize 

the convective terms iii)SIMPLEC^^, CTS-SIMPLE^^, etc., depending on the applica

tion o f turbulence models. Even though the SIMPLE algorithm produces very stable 

computational solutions its convergence rate is not satisfactory. A significant number 

of numerical studies have been successfully carried out using one of the family of 

SIMPLE algorithm for complex geometries and turbulent flow problems including 

one^® of the present author’s works.

A kind of SIMPLE algorithm^^'^^ has been used by Martinuzzi^\ Martinuzzi and 

Pollard^^, Pollard and Martinuzzi^^ to test a total o f 11 turbulence models, including a 

standard k -e model with a wall f u n c t io n a  low-Reynolds number model o f Lam and 

Bremhorst^, four algebraic stress models and five Reynolds stress models with and 

without wall terms for a developing turbulent pipe flow. Among them the results of 

the low-Reynolds number turbulence model of Lam and Bremhorst are in better agree

ment with experimental data than the results obtained from other turbulence models.



www.manaraa.com

1 0

Other approaches for solving the resulting set of equations include a simultaneous 

solution technique like the method used in the present study. It simultaneously solves 

for all flow properties along lines perpendicular to the stream wise direction, line-by- 

line marching to the downstream direction. The applications of simultaneous solution 

techniques are shown in Jang and Vradiŝ "̂ , Benston and Vradis^^, Vanka^^, Rubin and 

Reddy^^, Zedan and Schneider^^. The efficiency and accuracy of the simultaneous 

solution method is weU verified. But most of above applications of the simultaneous 

solution technique were for laminar problems except for Jang and Vradiŝ "̂  who solved 

for the flow in a developing turbulent planar jet with various turbulence models^ 

implemented in the parabolic governing equations. Vanka^® also demonstrated the 

simultaneous solution method with a multi-grid technique for various practical and 

complex flows including a turbulent flow in an axisymmetric pipe with a sudden 

expansion. But the attempt to solve for all flow properties in a coupled form was not 

successful because the multi-grid system combined with a wall function in the k-z  tur

bulence model failed to achieve a convergent solution. Consequently the solution of 

the k and e equations must be decoupled from the momentum and continuity equa

tions. The strongly coupled source forms for the turbulent flow equations tend to 

cause divergence and instability of the numerical scheme Using the simultane

ous solution technique the present author recently succeeded in solving for aU the flow 

properties in a low-Reynolds number k-z  two equation turbulent model describing the 

developing turbulent flows in a pipe^^’̂  ̂ and in a channel '̂*. The near-wall variations 

and the developing processes of the turbulent properties such as the time-averaged 

mean velocities, turbulent kinetic energy, its dissipation rate and Reynolds-stresses 

were demonstrated in detail and compared weU with available experimental data.

To analyze a fluid flow in which the pressure gradient is not constant, fully ellip

tic transport equations are essential^^. The transport equations governing a developing 

turbulent flow are inherently fully elliptic and characterized by strongly coupled forms 

and nonlinearities. Solving simultaneously for all flow properties in such strongly
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coupled partial differential equations is physically more appropriate than using a segre

gated or decoupled solution method.

2. OBJECTIVES

This study is concerned with i) an analytical approach to develop mathematical 

forms for an algebraic turbulence model and a low-Reynolds number k-z  two equation 

model, which account for the flow near smooth and rough walls and ii) the develop

ment of computational codes for an algebraic turbulence model and a low-Reynolds 

number k -z  two equation turbulence model which simultaneously solve all flow pro

perties in a developing turbulent pipe flow using a line-by-line marching iterative 

solution technique.

The main objective of this thesis is to develop turbulence models capable o f accu

rately describing the behavior of turbulence properties for the flow near smooth, transi

tionally rough and fully rough walls. Two turbulence models are developed; one an 

algebraic model based on theoretical analysis and the other a ^-e low-Reynolds 

number turbulence model based on numerical simulations combined with a new wall 

damping function. Both of these models are supposed to handle the entire range o f tur

bulent flow from the wall with various kinds of roughness to the fully turbulent region. 

The models introduce new roughness parameters, which are related to the roughness 

Reynolds numbers. The specific objectives are:

i) To develop analytical expressions for a continuous, smooth velocity profile, a tur

bulent or eddy viscosity, and the Reynolds-shear stresses for turbulent flow near 

smooth, transitionally rough and fully rough walls.

ii) To verify the accuracy of these analytic expressions by comparing with those of 

van Driest’s, since it is a similar formulation for flow over rough surfaces, and
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available experimental data.

iii) To verify the accuracy of the developed algebraic turbulence model by incorporat

ing it into a newly developed elliptic code and solving simultaneously for all flow 

properties in the time-averaged Reynolds transport equations for developing tur

bulent flow in a pipe.

iv) To develop a low-Reynolds number k-z  turbulence model based on the idea of 

the theoretical analysis for the algebraic turbulence model.

v) To develop a new fully elliptic code to solve the time-averaged Reynolds tran

sport equations and k-z  two equations in which the new low-Reynolds number 

turbulence model is implemented.

vi) To develop a simultaneous solution technique for a developing turbulent flow in a 

pipe using a line-by-line marching iterative solution method.

In the beginning of the study the author did not have any idea o f the turbulent 

flow over rough surfaces. He had studied carefully the original k-z  low-Reynolds 

number turbulence model of Lam and Bremhorst. Initially a quantity Cj was intro

duced into the damping function as a purely computational parameter to help the 

convergence of the k-z  model equations. The results showed that with a given set of 

boundary conditions computations agree well with other numerical and experimental 

results for certain range of C j . Further investigations revealed that Cj has some phy

sical meaning. It was found that it can serve as a measure of the wall roughness for a 

given turbulent flow. This encouraged the comparison with van Driest’s theory, in 

which continuous velocity and shear distributions for turbulent flow near smooth and 

rough walls were studied. An empirical relationship was eventually developed to 

relate Cj with the roughness Reynolds number k* based on the friction velocity, 

equivalent sandgrain roughness scale k̂  and kinematic viscosity of fluid v.
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3. TOPICS OF THE PRESENT WORK

In Chapter 2, "Theoretical Approach", a theoretical analysis which will yield a 

continuous velocity and shear distribution for turbulent flow near smooth, transitionally 

rough and fully rough walls is developed. The results for the mean velocity and shear 

stresses are compared with those of van Driest’s analysis and available experimental 

data.

In Chapter 3, "Computation 1: Algebraic Turbulence Model", the algebraic tur

bulence model is tested for developing turbulent flow in a pipe. Comparisons are 

carried out with the results of theoretical analysis and experiments.

In Chapter 4 ,"Computation 2: k-z  Low-Reynolds Number Turbulence Model", a 

numerical code using a simultaneous solution method to solve the Reynolds transport 

equations, combined with a newly developed low-Reynolds number k-z  two equation 

turbulence model is developed. The developing turbulent flow in a pipe is used to 

test this model and the results are compared with the results of theory and experimen

tal data.

The "Summary and Conclusions" are presented in Chapter 5.
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Chapter 2

Theoretical Approach

1. INTRODUCTION

Parts of many practical engineering systems, such as re-entry vehicles, missiles, 

air craft, ships, turbines, heat exchangers, piping networks and atmospheric flows, can

not be regarded as having aerodynamically or hydraulically smooth surfaces. The resis

tance to flow caused by turbulent flow on rough walls is larger than that for turbulent 

flow on smooth walls. Therefore accurate predictive models for turbulent flow over 

rough surfaces are of significant interest.

In the present study a theory which yields a continuous velocity and shear distri

bution for turbulent flow near smooth and rough walls is developed. This analysis 

introduces a roughness parameter Cj into van Driest’s damping factor^ for a smooth 

wall. The parameter is related to the roughness Reynolds number k* and permits the 

van Driest model for turbulent flow near a smooth wall to be modified to account for 

the effect of wall roughness. The expressions developed here for the mean velocity and 

shear stresses are compared with those of van Driest’s theory and available
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experimental data. Comparisons of mean velocity profiles in the logarithmic law region 

between the present theory and van Driest’s show that the roughness parameter Cj is 

inversely proportional to the roughness Reynolds number k*. In the fully turbulent 

region the shear stresses determined by the present theory agree well with those from 

van Driest’s theory and experimental data.

2. THEORETICAL APPROACH

2.1 Van Driest’s Analysis

For the flow near an oscillating flat plate Stokes^^ showed that the velocity profile 

has the form of a damped harmonic oscillation of the plate, the amplitude factor of 

which is exp(-y /A), in which A is a constant that depends upon the frequency of 

oscillation of the plate and the kinematic viscosity v of the fluid. When the plate is 

fixed and the external fluid oscillates relative to the plate^^’̂ ,̂ the factor [ 1 - exp (-y 

/A) ] must be applied to the fluid oscillation to obtain the damping effect on the 

smooth wall. Van Driest^ first introduced this damping factor into expressions of the 

universal constant and mixing length of turbulence modelling to take into account the 

existence o f a smooth wall. The total mean shear stress x for turbulent flow is 

identified as

Z = -  p a y  (2.1)
dy

where ÏÏ is the mean velocity parallel to the wall, u' the instantaneous fluctuation of  

velocity in the direction of stream, v' that in the direction normal to the wall, y  the 

length scale normal to the wall and measured positive from the wall, p the density of 

the fluid, and p the viscosity of the fluid. The first term on the right-hand side of 

equation(2.1) represents the effect of molecular viscosity on the mean flow whereas the
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second term is a Reynolds-stress. According to Prandtl’s mixing length hypothesis^*^® 

it is written as

z = + p K Y i ^ Ÿ  (2.2)ay ay

where K  represents a universal constant. Therefore the expression due to van Driest 

becomes:

X = p ( ^ )  + pA r^^[l-exp(-y M (2.3)

where the presence o f wall modifies the universal constant:

k = K [1 -e x p ( -y M )]  (2.4)

and the mixing length must be changed to

/ = ATy[l -  exp(-yM )] (2.5)

It is convenient to write equation(2.3) in dimensionless form as follows:

(2.6)
Vtw/p V

where x̂ , is the shear stress at the wall. Equation(2.3) becomes

—  = ( - ^ )  + -  exp(-y+/A. ) ] ^ ( .^ ) ^  (2.7)
dy* dy*

in which A ,  is van Driest’s constant of turbulence and is equal to 26. Furthermore,

yt =AT [ 1 -e x p (-y * M ,)]  (2.8)

and
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r  = Ky^H -  exp(-y+/A* )] (2,9)

where -  Vr^Vp IN.  According to equation(2.1) the Reynolds-stress x, is obtained 

from

dy

in which x̂  = -piTv*. Hence, with equation(2.6).

dy

or

X, = t - t „ ( | Ç )  (2.11)

^

The eddy viscosity is obtained from

= (— ) -  ( - 7 ^ )  (2.12)

X = H ( |^ )  + P , ( ^ )  = ( H + P , ) ( ^ ) ( |^ )  (2.13)oy dy p 3y+

so that

—  = [(— ) / ( | ^ ) ]  -  1 (2.14)
^ ^  dy^

For boundary layer flow with zero pressure gradient condition, dx/dy = 0 at the wall 

and therefore x = x^ near the wall. Hence equation(2.7) yields the mean velocity gra

dient near the wall in the form

 ̂ (2.15)
1+V l+4Ar^'"'‘[l-exp (-y+ M . ) f
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From this the well-known van Driest velocity profile for the turbulent flow near a 

smooth wall is obtained as

u ' =
0 1+V l+4AT^'^^[l'-exp(-y^/A* )]^

(2.16)

where K  is the von Karman constant which is equal to 0.4. The Reynolds shear stress 

and eddy viscosity become, from equations (2.12) and (2.14), respectively.

=  1 -
d û
dy

(2.17)

d û
- 1 (2.18)

Van Driest also proposed analytic expressions for the flow near a transitionally

rough wall and the beginning of a fully rough wall. For the flow near a beginning of

fully rough wall the wall damping effects in equations (2.8), (2.9), (2.15) and (2.16) 

disappear, therefore the universal constant, mixing length, mean velocity gradient and 

profile become

k = K  (2.19)

/+ = Ky+ (2.20)

d û
1 +  V l  + (2 K y * f

(2.21)

which integrates to
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(2.22)

For the flow region under the viscous influence of the wall, where the roughness Rey

nolds number k* { ^ x .^ ! p k j v  ) is less than 60, and k̂  is the average roughness size, 

the nearness o f the wall still shows some effect through viscous damping. In this

regime of wall roughness van Driest introduced a disturbance factor which will offsets

the damping factor owing to the roughness. The proposed universal constant and 

mixing length are

k = AT[l-exp(-y+/26) + exp(-60y+/26A:. )] (2.23)

- K y '^ [ l -exp (-y  ̂ /26) + exp(-60y ' Î26k* )] (2.24)

And the mean velocity gradient and profile are

d û

l-l-Vl+4Ar^^^[l-exp(-yV26) + exp(-60y^/26^*)]^
(2.25)

u* = J  (2.26)
0 1-1-V1+4AT  ̂̂  [ 1 -exp (-y  ̂ /26) + exp(-60y ' Î26k* )]

Equation(2.25) and (2.26) give expressions for a smooth wall and the beginning of a 

fully rough wall if  k* is 0 or 60, respectively.

The results shown in the above analysis follow the experimental data quite well 

for the entire region including the viscous sublayer region (0<y^<5), and the
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transitionally

(5<y^<60) and fully turbulent regions (y"^>60). The results of the above analysis are 

approximately valid with a streamwise pressure gradient because the shear stress near 

the wall is approximately equal to the wall stress. For a smooth wall, the asymptotic 

curves in the laminar sublayer region and in the fully turbulent flow region are, respec

tively,

n+ = y+ (2.27)

= 5.24 + 2.5 lny+ (2.28a)

or the more generally accepted expression shown by Schlichting^^

= 5.5 + 2.5 lny+ ' (2.286)

It is evident from the smooth-wall curve that the viscous damping effect of the wall

extends out to about y '"'=60. Therefore it is expected that any roughness elements

should also extend to about y '"'=60 before they completely nullify the viscous influence 

of the wall. The mean velocity profile for the beginning of fully rough wall, i.e. 

k* =60, gives an asymptote:

= -1.325 + 2.5 lny+ (2.29)

Thus, if there are no viscosity effects for roughness greater than k* = 60, then the gen

eral velocity profile beyond the roughness protuberances would be, from dimensional 

analysis,

w'*' = const. +  ~  ln(Y ) (2.30)

= const. -  In/:* 4- ^  Iny"̂
A  A
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so that, from equation(2.29) when AT =0.4 and /:*= 60, the velocity profile beyond 

k* >60 becomes

= 8.95 -2 .5  InA* + 2.51ny+ (2.31a )

or, if we consider = 70 to be the beginning of fully rough regime, following 

Schlichting^^ we find

= 8.5 -2 .5  Ink* + 2.51ny+ (2.316)

which is simply a parallel shift of the logarithmic velocity profile for a smooth wall.

2.2 Present Analysis

According to van Driest’s analysis, for a smooth wall the wall effect damps out 

exponentially and for a fully rough wall the exponential damping effect of the wall 

disappears. To contend with these two limiting cases as well as the transitionally 

rough wall case a new roughness parameter Cj is introduced into the damping factor 

for a smooth wall. The new damping factor is:

l-Cyexp(-y+/26) (2.32)

where Cj is a. function of the roughness Reynolds number k*. The proposed univer

sal constant, mixing length, mean velocity gradient and profile are as follows:

k = K { \ - C j  exp(-y+/26)] (2.33)

/+ = ATy+[l-Cyexp(-y+/26)] (2.34)

 ̂ (2.35)ay* 1+V l+AK‘̂ * \ \ - C j  exp(-y+/26)]'
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»* = I   (2.36)
0 lW l+ 4JC ^  [l-C ;exp(-y+/26)]2

Equation(2.36) for Cy=1.0 gives van Driest’s equation(2.16) for the smooth wall 

and while for =0.0 van Driest’s equation(2.22) for the beginning of a fully rough 

wall is recovered. Otherwise Cj is related to the roughness Reynolds number and 

predicts the turbulence properties for the flow near transitionally rough walls, and is 

similar to the van Driest equation(2.26). Consequently the introduction of Cj consti

tutes a new near-wall turbulence model for the flow over smooth, transitionally rough 

and the beginning of fully rough walls. For large the van Driest velocity profiles 

for both smooth and rough walls and the present expression all become

«■'■ = constant + Iny'*' (2.37)
K

which is von Karman’s logarithmic velocity distribution law for fully turbulent flow.

3. RESULTS AND DISCUSSIONS

The calculated results of van Driest’s equations for the mean velocity and Rey

nolds shear stress are compared with the present results and available experimental 

data. The integral equations for the mean velocities are numerically calculated by using 

a Gaussian Quadrature Integration Method^^*^  ̂ with 36 points. The functional rela

tionship between roughness Reynolds number and new roughness parameter Cj is 

obtained.

Figures 2.1 and Figure 2.2 show semi-logarithmic plots for the mean velocities 

with experimental data of Laufer^  ̂ for a smooth pipe measured in the fully developed
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turbulent flow regime for two Reynolds numbers (50,000 and 500,000) and rough wall 

data of Ligrani and Moffat̂ "  ̂ for boundary layer flow on a rough surface. Also 

shown are the mean velocity profiles for the smooth, transitionally rough and fully 

rough walls from van Driest’s analysis and from the present equation(2.36) with 

Æ =0.4. The results of the present theory with Cy =1.0 predicts the solution of a 

smooth wall eqution (2.16) and that with Cy=0.0 predicts that of the beginning of a 

fully rough wall, equation(2.22) of van Driest’s theory. For the transitionally rough 

wall regime the present results are obtained by comparing Cj with the corresponding 

roughness Reynolds number k* in equation(2.26) which will yield the same loga

rithmic law velocity profiles within a 2 % error. As expected, for the two theories the 

mean velocities in the logarithmic law region far away from the wall are well matched 

with each other.

Direct comparison of mean velocity profiles in the logarithmic law region 

obtained from the present equation(2.36) with those of van Driest’s equation(2.26) 

gives the functional relationship between the new roughness parameter Cj and rough

ness Reynolds number k* as shown in Figure2.3(also Table 2.1). This clearly shows 

an inverse relationship given by

k, = 60 ( 1 -  C /  * ) (2.38)

Figures 2.4, 2.5 and the 2.6 show the near-wall distributions of the Reynolds 

shear stresses calculated from van Driest’s theory and the present theory. Also plot

ted in the figures are the experimental data of Schubauer^^ for smooth pipe and boun

dary layer flows. In the fully turbulent region beyond y ''>60 the Reynolds shear 

stresses calculated from both theories match with experiment for smooth walls. But 

very close to the wall the distribution of the shear stresses from van Driest’s analysis 

(Figure 2.5) are steeper than those of the present analysis (Figure 2.4). The results of
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Cy=1.0 and 0.0 correspond to those of k*=0.0 and 60, respectively.

Figure 2.7 shows the near-wall distributions of the damped universal constant, k 

according to van Driest’s analysis, equation(2.23), and the present analysis, equa- 

tion(2.33), respectively, for K  =0.4. Also shown in the figure is the experimental data 

of Ligrani and M offat^ for boundary layer flow. The introduction of Cj,  which 

corresponds to the roughness Reynolds number k* in the logarithmic law velocity 

profile, makes the k near the wall differ from that of van Driest. Near the wall the 

present theory overpredicts the experimental data; however, overall trends are the same 

since in both cases k decreases near the wall as k* decreases. Away from the wall 

all of the theoretical results and experimental data for k approach 0.4.

In Figures 2.8 and 2.9 the corresponding mixing length from equations(2.24), 

(2.34) and turbulent viscosities calculated from equation(2.14) using mean velocity gra

dients are compared, respectively. Figure 2.8 shows that in the transitionally rough 

surfaces, except very close to the wall, the present model produces a little higher mix

ing length. The same explanation applies to the eddy viscosity shown in the Figure 

2.9.

4. CONCLUSIONS

A new damping factor is suggested to predict turbulent flow near transitionally 

rough walls. A functional relationship between roughness Reynolds number k* and a 

new roughness parameter Cj is obtained. In the logarithmic velocity distribution law 

region the modified mean velocity profiles and Reynolds shear stress are consistent 

with those of van Driest’s formula.

In the present analysis the roughness parameter Cj is shown to be related only to 

roughness Reynolds number k*. But the number of parameters describing roughness is 

extraordinaily large owing to the great diversity of geometric forms. By adjusting Cj
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to the logarithmic mean velocity profile via the empirical relationship similar to the 

equation(2.38) of any type of surface conditions the new model should permit better 

prediction of the mean velocity and the Reynolds-shear stress for the flow near 

roughened surfaces.
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T able 2.1 C om parison o f roughness param eter Cj (present theory) and  

roughness R eynolds num ber k* (van D riest’s th eory)

T heore tical A pproach

G r k*

1.0 0

0.77 10

0.52 20

0.33 30

0.195 40

0.0 60
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Chapter 3 

Computation 1 
Algebraic Turbulence Model

1. INTRODUCTION

In the present study a steady state, incompressible, developing turbulent flow in a 

circular pipe is selected to evaluate the newly developed algebraic turbulence viscosity 

model in Chapter 2. A new roughness/computational parameter Cj is introduced into 

the damping factor in the algebraic turbulent viscosity for the flow near smooth 

wall as originated by van Driest^. The new algebraic model is designed to predict the 

behavior of the turbulence properties for the flow near smooth, transitionally rough and 

fully rough walls. A fully elliptic computational code for the time-averaged Reynolds 

momentum equations combined with an algebraic turbulence model is developed.

The discretized governing equations are simultaneously solved for all flow vari

ables (UyVJ^), using a line-by-line marching iterative solution technique, up to 100 

pipe diameters downstream for bulk Reynolds numbers 10,000, 50,000 and 500,000.
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The near-wall variations of turbulence properties and their distributions in the fully tur

bulent region are obtained and compared with available experimental and the calcu

lated results o f the van Driest’s theory.

It is shown that the roughness parameter is inversely proportional to the rough

ness Reynolds number within a moderate range of the wall roughness. In the near- 

wall region the mean velocity and Reynolds shear stress over rough walls are increased 

compared with those over smooth walls. In the fully turbulent region the roughness 

effect of the wall disappears, so that the roughness on the wall does not affect the dis

tributions of the Reynolds shear stress.

2. PROBLEM FORMULATION

2,1 Governing Equations and Algebraic Turbulence Model

The fully elliptic time-averaged Reynolds transport equations are written in 

cylindrical, axisymmetric coordinates. The following equations are written in nondi- 

mensionalized form for a steady, incompressible, two-dimensional turbulent flow. The 

flow properties are normalized as follows:

V = —  , P  = ~ ^ ,  (3.1)
Wq pMo

where x  and y  are the horizontal and radial coordinates, m is the mean velocity paral

lel to the X  direction, v the cross mean velocity in the y  direction, p  the mean static 

pressure, p the density of fluid.
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d u  ^  1 drV
dX r dr

(3.2)

X  -Momentum Equation;

dX dr dX Reo dX
( l+ 2 v j dU

8%

4-
ReD r dr dr dr dX C13)

r -Momentum Equation;

1
dX dr dr Rep dX

ReD
l A
r dr

(l4-2vjr dV
dr (3J0

where the Reynolds number is defined by mean velocity at the pipe inlet Wq» pips 

diameter D  and kinematic viscosity of fluid v. The turbulent or eddy viscosity is 

defined as

1
-  1, (3.5)
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with the modified mean velocity gradient

du

l+V  l+4A:^+^[l -C^ exp(-)' +/26)]:
(3.6)

where

«+ = - Â =  , y*  = - (3.7)
V v /p  V

and K  is the von Karman constant, 0.4, y„ normal distance to wall and Cj is a rough

ness parameter related to the roughness Reynolds number k* which is defined by 

and k̂  is average roughness size.

2.2 Finite Difference Equations and Computational Grid

The fully elliptic governing partial differential equations (3.2)-(3.4) are discretized 

using the finite difference approximation with a first order upwind difference scheme 

for convective terms and a second order centered difference scheme for diffusion 

terms. In the future the fully second order computations for the convective terms will 

be carried out. The staggered grid of the Marker and Cell(MAC) method proposed by 

Welch et is used for the calculation of C/,V and P . The discretized grid posi

tions based on the staggered grid system for the calculation of each flow property are 

shown in Figure 3.1. Based on this staggered grid system the continuity equation can 

be written using a second order accurate centered difference scheme without interpola

tion and the pressure can be calculated in the same grid point where the continuity 

equation is evaluated. Patankar '̂* discussed the merits of the staggered grid in detail. 

The resulting finite difference equations in the nonuniform grid system are written in 

Appendix,
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To resolve the large gradient of mean velocities and turbulence properties in the 

near-wall region, a nonuniform grid system is used. The positions o f the grid system 

are carefully determined by modifying an exponentially stretching transformation used 

in ARC2D code^^ to generate a finer grid near the wall and the inlet region. In the 

fully turbulent region a uniform grid system connected smoothly to the nonunifoim 

grid system is used. Depending on Reynolds number, the distance to the first grid 

point from the wall should be adjusted to get a reliable convergent solution. For Rey

nolds numbers 50,000 and 500,000 and Cj = 0.9 in a 120x50 grid system to get the 

grid independent results the typical positions used for the first grid are 0.00004 and 

0.0000015 times o f pipe radius, respectively. This is sufficient to put 14 grid points 

within laminar sublayer region(y"'’<5) and 24 grid points within the buffer region 

(y+<40).

2.3 Boundary Conditions

The set o f the discretized linear equations are solved numerically for a steady 

state, incompressible, two dimensional, developing turbulent pipe flow with uniform 

inlet conditions for the mean velocities.

Since an iterative solution technique has been adopted to solve the set of elliptic 

governing equations, two boundary conditions, an inlet condition, and an exit condition 

are required. The pipe centreline is assumed to be an axis o f symmetry. Along the wall 

no-slip conditions are enforced for mean velocity components. At the inlet, uniform 

values for the mean velocity are specified, i.e. U q ly V q= 0 are given along the 

radial direction at two axial stations. At the exit, for all flow variables except mean 

pressure the axial gradients are to be zero. For mean pressure an arbitrary value is 

specified, i.e. P  = 1 .  Due to the staggered grid system and finite difference scheme 

used, the inlet and wall conditions are not necessary for the mean pressure. The details 

of computational geometry, boundary conditions, inlet conditions and exit conditions
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are shown in Figure 3.2.

3. SOLUTION METHOD

At each grid point the coefficient element sets a 3x3 matrix. The discretized 

equation set is solved numerically from the pipe inlet up to 100 pipe diameters down

stream. After initializing the whole computational domain with the inlet conditions a 

block-tridiagonal-coefficient-matrix with 3x3 matrix elements is solved along the radial 

coordinate direction from centreline to the wall, line-by-line marching to the down

stream direction. To invert the block-tridiagonal-matrix an algorithm suggested by 

Issaacson and Keller^^ is used.

The turbulent viscosity is evaluated at the same position as P  at the end of each 

global iteration process for the whole computational domain using the newly obtained 

mean velocities. A fully explicit method is used for U and P .

Due to the staggered grid and the finite difference scheme used for the continuity 

equation the residual of a discretized continuity equation always becomes machine 

accuracy 10“^̂  at any stage of the solution procedure thus the convergence is checked 

for the Reynolds-averaged momentum equations. In general for a 120x50 grid size 

130 iterations are sufficient to give a convergent solution. When the total residual of 

the discretized equations becomes less than 10"  ̂ the iteration process is stopped. The 

computational procedure is shown in Figure 3.3.

4. RESULTS AND DISCUSSIONS

In Figure 3.4 the developing axial mean velocity vs x!D  for Re^ =10,000, 50,000 

and 500,000 at r/i?=0.0, 0.5, 0.75, 0.94 from the inlet to 100 pipe diameters
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downstream is shown for Cy=1.0. Figure 3.4 shows, as expected, tiiat at higher Rey

nolds numbers the mean velocity distribution across the sectional area are flatter than 

for the lower Reynolds numbers. For the same initial conditions the mean velocity of 

the lower Reynolds number turbulent flow reaches fully developed conditions faster 

than that o f the higher Reynolds number turbulent flow. But experimental data for the 

axial mean velocity show that fully developed mean velocity profiles do not occur until 

more than 40 pipe diameters downstream. Therefore, the algebraic turbulence model 

predicts achievement of fully developed flow too fast because the algebraic turbulence 

model accounts neither for transport and history effects o f turbulence nor for laminar 

and transition regions. The results of early development of the mean velocity lead to 

the increased flatness of the radial distribution of the fully developed mean velocity as 

shown in Figure 3.5. In Figure 3.5 the mean velocity profiles in the fully developed 

region, %/D =80, for Re^ =500,000 and several Cj are compared with the smooth wall 

experimental data of Nikuradse^^ for Re^ =380,000. As Cj decreases the mean velo

city in the fully turbulent region, i.e. near centreline region increases while in the 

near-wall region it decreases. It shows that the effect of wall roughness reaches the 

whole mean velocity field.

From Figure 3.6 to Figure 3.8 for Re^ =10,000, 50,000 and 500,000 the loga

rithmic velocities are demonstrated and from Figure 3.9 to Figure 3.11 the same results 

are plotted on linear coordinates. To show the effect of rough walls on the mean 

velocity the results of 0 .0 ^ ^  <1.0 are shown. The present result with C^= 1.0 is 

corresponding to that of van Driest’s theory for a smooth wall, i.e. equation(2.16) and 

that with C j= 0 .0  is the beginning o f a fully rough wall, i.e. equation(2.22). Other 

values o f Cj are for transitionally rough walls. Except for the wake regions the results 

of Cj=l.O  compare well with the experimental data of Laufer^  ̂ for smooth walls and 

the empirical correlations equation(2.27) and (2.28b). The values of the k* correspond

ing to Cj are obtained by the direct comparisons of the logarithmic mean velocity 

profiles in the fully turbulent region calculated from the equation(2.26) of van Driest’s
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theory and are tabulated in Table 3.1. For the lower Reynolds number flow the slope 

of the logarithmic mean velocity profiles deviates from the von Karman’s logarithmic 

velocity law for a smooth wall. Therefore for Re^ =10,000 the k* corresponding to 

Cj is obtained approximately in the range o f 40<y'*'<100. In Figure 3.8 the experi

mental data of Ligrani and Moffat^"* for boundary layer flow on rough surfaces are 

shown. The present result corresponding to k* o f van Driest’s theory predicts a little 

higher k* than that of experimental data. But the overall effect o f Cj being different 

from 1.0 results in the shift o f the logarithmic velocity profile for the smooth wall.

Figures 3.12, 3.13 and 3.14 demonstrate the near-wall behavior of Reynolds shear 

stress. The effect of the wall roughness on the Reynolds shear stress is shown 

respectively in Figures 3.12, 3.13, and 3.14 for Rqq= 10,000, 50,000 and 500,000. 

The corresponding roughness Reynolds number k* from the van Driest’s formula and 

experimental data of Schubauer^^ for the smooth pipe and boundary layer flows are 

also shown. The near-wall variation of the Reynolds-stresses is not affected much 

by Reynolds number. But as the wall roughness increases a significant increment in 

the Reynolds-shear stresses is shown. In the laminar sublayer region (y"^<5) the 

present calculations with Cy=0.8 and 0.9 predict the experimental data for the smooth 

surfaces very well. As Reynolds number increases the results in the fully turbulent 

region are independent of the roughened wall conditions and the effect of wall rough

ness is limited to the buffer region. For the higher Reynolds number flow in part of 

the buffer region and the fully turbulent region the distribution of Reynolds shear 

stress is consistent with the experimental data for smooth walls. The present results are 

consistent with the Reynolds similarity hypothesis of Townsend^^ which means that at 

sufficiently high Reynolds number turbulent motion outside the inner layer(up to five 

times of the roughness height) is independent of the wall roughness.

Figures 3.15, 3.16 and 3.17 show the distribution of Reynolds shear stresses along 

the radial directions for different C j . For the higher Reynolds number flow the effect 

of wall roughness is confined to regions very close to the wall. On the contrary to the
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higher Reynolds number flow (Figure 3.17), for the case of lower Reynolds number 

turbulent flow (Figure 3.15) the effect of the wall roughness is significant even in 

regions away from the wall. This may be due to the fact that the strong diffusive 

action transfers the effect of the wall conditions further away from the wall at lower 

Reynolds numbers. In the fully turbulent flow region the present results compare very 

well with the experimental data of Laufer^  ̂ for smooth walls.

Figure 3.18(also Table 3.1) shows the functional relationship between the rough

ness Reynolds number k* in equation(2.26) and the roughness parameter Cj for 

Re^ =10,000, 50,000 and 500,000. Also in the Figure the result obtained from the 

comparison of theories in Chapter 2 is shown. The logarithmic law velocity profiles 

in the fully turbulent region are compared to the results of the present algebraic model 

and van Driest’s theory. From the numerical simulation of algebraic turbulence 

model the empirical functional relationship between k* and Cj is given by:

k, = 6 0 ( 1 -  C /  * ) (3.8)

which is the same relationship as the result obtained in chapter 2.

5. CONCLUSIONS

Based on the present study the following conclusions are obtained.

1) A simultaneous solution technique was used successfully for the Reynolds- 

averaged momentum equations combined with a new algebraic turbulence model.

2) By introducing a new roughness parameter Cj  into the damping factor of the van 

Driest’s model for a smooth wall, a new algebraic turbulence model was 

obtained and it predicts mean velocity and Reynolds-shear stress for the flow
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near smooth, transitionally rough and fully rough walls. The correlation between 

the roughness Reynolds number k* and roughness parameter Cj is found and it 

is shown that Cj is inversely related to k* within the moderate range of the wall 

roughness, i.e. 0 .0^ *  <60.

3) In the logarithmic law of the wall region, the overall results obtained show good 

agreement with experimental data for the flow near smooth walls. Very close 

to the wall the introduction of the new roughness parameter predicts high values 

of Reynolds shear stresses compared with the experimental data for smooth 

walls.
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Turbulent Pipe Flow

Yes

Initialization

Write Solution

Inlet Condition

Grid Generation

Plotting Program

Apply Bouncary Condition

Turbulent Viscosity

if Resmax<1.02-06

Calculate Residuals

Calculate Matrix Coeff.

Block Tri-Diagonal Solver

No

Figure 3.3 F low  chart for com putational procedure
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T able 3.1 C om parison o f roughness param eter C'y (algebraic turbulence  

m odel) and roughness R eynolds num ber k* (van  D r ie st’s 

theory)

Algebraic T urbulence Model

R e2) .= 10,000 R ep  =  50,000 R ep  =  500,000

Cy k* Ci k* k*

1.0 0 1.0 0 1.0 0

0.9 7 0.9 7 0.9 5

0.8 10 0.8 10 0.8 10

0.6 20 0.6 19 0.6 18

0.4 30 0.4 30 0.4 28

0.2 40 0.2 41 0.2 40

0.0 60 0.0 60 0.0 60
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Chapter 4

Computation 2

k - z  Low-Reynolds Number 
Turbulence Model

1. INTRODUCTION

The development of high-speed computers and new computational methods has 

made the computation o f more complex mathematical models for fluid flow problems 

possible. But some of the well-known and simple flows have served over and over 

again as standard test cases for the evaluation of numerical solution procedures and 

mathematical models. One benchmark problem is a turbulent pipe flow. Since the 

historic dye experiment was first carried out by Reynolds^^ there have been many stu

dies o f the turbulent flow in a pipe.
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The roughness effect on a turbulent flow in a pipe is not only of fundamental 

interest in fluid dynamics but is also of practical importance. In the earlier experi

ments sand grain type roughness was employed by Nikuradse^^, Hama^^, and Grass^ .̂ 

In experiments in which repeated rib (or groove) roughness configurations were used 

the geometrical parameter used to describe the roughness pattern is the roughness ele

ment spanwise aspect ratio (W/k),  where W is the span wise distance in the cavity 

between ribs and k is the height of roughness element. Perry and Joubert̂ "̂ , Liu, Kline 

and Johnston^^, Ferry, Schofield and Joubert^ ,̂ Antonia and Luxton^^, Wood and 

Antonia^^ studied boundary layer flow over <i-type roughness (Wlk<l) .  Ligrani and 

Moffat^^, Pimenta, Moffat and Kays^^, Coleman, Moffat and Kays^^, Siuru and 

Logan^®  ̂ studied characteristics of boundary layer flow developing over k -type rough

ness surface (W!k>\).  But experimental data for rough surfaces including turbulent 

energy and Reynolds-stresses, do not exist in large quantities. Especially scarce are 

near-wall data for rough surfaces because of the difficulties in measurement. The 

small amount of data obtained are for slightly different flow conditions, such as boun

dary layer flows^"*’̂ .̂ Experimental data for smooth pipes can be found in the works 

of Laufer^^, Schubauer^^, Nikuradse^^, Bar bin and Jones Lawn^^ ,̂ Richman and 

Azad^^.

In the present study z. k -z  low-Reynolds number turbulence model is developed. 

The low-Reynolds number turbulence model of Lam and Bremhorst^ is modified and 

incorporated into the code. The new computational parameter Cj and a modelling 

constant Aq are introduced into a damping factor within a combined damping function 

/^ .  The same test problem as that for the algebraic turbulence model, i.e. a steady 

state, incompressible, developing turbulent flow in a pipe, is selected to evaluate the 

newly developed numerical code and turbulence model. The simultaneous solution 

technique, which was not successful for the k -e turbulence model, according to several 

researchers^®’̂ ,̂ is successfully used here. All flow properties {U ,V yP ,k and e) are 

solved simultaneously using a line-by-line iterative solution method for distances up to
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100 pipe diameters downstream for bulk Reynolds numbers of 10,000, 38,000, 50,000, 

380,000 and 500,000. The bulk Reynolds number, R e^, is based on the uniform inlet 

velocity, Wq» Ae pipe diameter, D , and the kinematic viscosity of fluid, v.

Initially Cj is treated as a purely computational parameter. The results show that 

with a given set of boundary conditions computations agree well with other numerical 

and experimental results for a certain range o f Cj.  Further investigations revealed 

that Cj has a physical interpretation. It is found that it can serve as a measure of the 

wall roughness for a given turbulent flow. This encouraged the comparison with van 

Driest’s earlier work^, in which continuous velocity and shear distributions for tur

bulent flow near smooth and rough walls were studied. An empirical relationship was 

eventually developed to relate Cj to the roughness Reynolds number k* based on the 

friction velocity, equivalent sandgrain roughness scale k̂  and kinematic viscosity 

of fluid V. The mean velocities, turbulent kinetic energy, its dissipation rate and the 

Reynolds-stresses are demonstrated. Comparisons are made with the results of van 

Driest’s theory and available experimental data for smooth and rough walls.

2. PROBLEM FORMULATION

2,1 Governing Equations

The governing equations are fully elliptic in cylindrical, axisymmetric coordi

nates. The following equations are written in nondimensionalized form. The flow pro

perties are normalized with following scales:

% r = (7 = —  , V = — ,
D U  U q U q

k = ^ ,  e = - ^ ,  (4.1)
P«0 «0 “0
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dU ^ I drV _ 
4------- r—  = 0

dX r  dr
(4.2)

X  -Momentum Equation;

a x  Rep ax
( 14-2V J

dU
ax 3 ax

4-
ReD

i l _
r dr

(4.3)

r-Momentum Equation;

a?  ̂ 1 a
ax  dr dr Rep 3X

4-
ReD

l A
r dr

(l+ 2v,)r a y
dr

2 1 drk
3 r dr

(4.4)

^-Equation;

1 a
Rep a x

ReD
l A
r dr

4- - — -  e
ReD

04  j )
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e-Equation;

1 a
Rep ax

V, ^ae(14-— )c /a x

+
ReD

l A
r dr

ae(1+— )r
Gc dr

(4.6)

where the production of turbulent kinetic energy is

Pk =v, (4.7)

and the turbulent viscosity and Reynolds number are

D r- f  k'^ T> P“ 0^V, =  R e g  , R e g  =  — —
c p.

(4.8)

where = 0.09, 

reference 19.

1.0, Cg = 1.3, Cgi = 1.44, and 0^2 = 1.92 as recommended in

2.2 Low-Reynolds Number Turbulence Model

According to Lam and Bremhorst^ a damping function can be obtained by 

using the Hassid-Poreh^®^ one equation turbulence model employed by Gibson, Spald

ing and Zinser^^ in which the turbulent viscosity and the dissipation rate o f turbulent 

kinetic energy are given by

(4.9)
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E = + 2 V A (4.10)
yn

where is the normal distance from the wall. Combining equations (4.9) and (4.10) 

to eliminate the expression for turbulent viscosity can be obtained:

V, =  i f f
0.01189i?i^2

l+ A fl+ 5 0
K

(4.11)

Comparing this with equation (4.8) for C m =0.09 the damping function becomes

-J1+A / 1+-
50

V & ( i- (
-0.011897?i^2 (4.12)

Lam and Bremhorst suggested the simpler equation

/  u = (1 - f (4.13)

which makes /  ̂  a function of both Rj  ̂ and R .̂ For the fully turbulent region, f  ̂  will 

tend to unity at large distances from the wall but the Rj  ̂ dependence near the wall is 

retained. But for this form of a singularity exists at the wall. As the wall is 

approached the quantities and R̂  become zero. Therefore the first term in equa-

tion(4.13), becomes zero while the second term, (1-H--^-) becomes infinite.
&

But the former one asymptotes to zero faster than the second one approaches infinity, 

i.e.

lim/M — > 0 (4.14)
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The numerical results o f Lam and Bremhorst’s model are shown in Figure 4.3 and Fig

ure 4.4. The disappearance of the damping function might cause unrealistic 

overshoot of the production term in the equation(4.6) in which the damping function 

/ 1  is an inverse function of /^ .

= (4.15)
J p.

Tlie other damping function / 2  is affected indirectly by the turbulence Reynolds 

number and tends to zero as R̂  becomes zero.

f i  = (4.16)

The turbulence Reynolds numbers are defined as follows:

=  (4.17)

And Lam and Bremhorst obtained the modelling constants by numerical trial and error:

= 0 .0 5  , 4 ^  = 0.0165 , = 2 0 .5  (4.18)

In spite of the singularity problem with f^y  the robustnesses of Lam and 

Bremhorst’s model are demonstrated. The experimental evidence and computational 

results firom several turbulence models shown in Figure 2 of reference 20(also see Fig

ure 4.3 in present results) show that although among them the model of Lam and 

Bremhorst is best, it still fails to predict the non-zero value of at the wall because 

of the disappearance of the damping factor at wall.
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2.3 New Computational Parameter C j  and Modelling Con
stant A c

In the present study a computational parameter Cj  is introduced into a damping 

factor of /^ .  In addition, an arbitrary constant, Aq -, is added to the second term of 

/  The effects o f Cj and Ac  on the mean axial velocity, the turbulent kinetic energy 

and the dissipation rate of turbulent kinetic energy are shown in Figures 4.10, 4.11 and 

4.10, Ac  is introduced to ensure the vanishing of v /  at the wall. The new damping 

function is defined as follows:

/ ^  = [ 1 -  ]^1 + -T- ' - ) (4.19)
Ac + tit

The damping function f  ̂  will now vary depending on not only and but 

also Cj and A c,  and as the wall is approached, it becomes a non-zero value if  Cj is 

not 1.0. In case of Cj other than 1.0, for example, with the limit case of Cj -  0.0 

and Ac =0.1, the second term in equation(4.19) will be 206 at the wall which will 

result in the same magnitude for /^ .  Furthermore, at the first grid point, which is 

usually on the order =0.5, the magnitude of the second term of in equation(4.19) 

with Cy=0.0 and A^ =0.0 becomes larger than that with Cy =0.0 and Ac=0.1. How

ever at grid points other than the first one the computational results do not show any 

significant differences in the value of /^ .  It is important to show that for Cj close to

0.0, a non-zero finite value of at wall does lead to an approximately zero value of 

turbulent viscosity even for very small A c . This might be shown in the following 

manner. Consider the turbulent eddy viscosity expression shown in equation (4.8) as 

written below:

V, = Reg (4.8)
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At the wail is non-zero and finite except where C j =1.0. The quantity is 

an empirical constant. Analysis of the experimental data^® shows that the rate o f dissi

pation of the turbulent kinetic energy is non-zero finite at wall and the turbulent kinetic 

energy within the laminar sublayer is proportional to the second power o f wall dis

tance:

= 2(AU2B^yU.. .)  (4.20)

• • • (4.21)

where A'*' and are experimental values. Therefore at very small distances from the 

wall the turbulent viscosity should be proportional to y~^\ Consequently

lim v, = 0 (4.22)
y - ^

The sensitivity of f  ̂  and the turbulence properties to the value of Cj has been 

tested and the results will be demonstrated later.

2.4 Computational Grid and Boundary Conditions

The set of the fully elliptic governing differential equations is solved numerically 

for a steady state, incompressible, two dimensional, developing turbulent pipe flow 

with uniform inlet conditions for the mean velocities and other turbulence properties.

The low-Reynolds number turbulence model (compared to high-Reynolds number ver

sions in which wall functions are used to avoid the calculation of laminar sublayer 

region) needs a very fine grid near the wall. To resolve the large gradient of mean 

velocities and turbulence properties in the near-wall region, a nonuniform grid system 

is essential. The positions of the grid system are carefully determined by modifying 

an exponentially stretching transformation used in ARC2D code^^ to generate a finer
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grid near the wall and inlet regions. In the fully turbulent region far away from the 

wall a uniform grid is used. Most of the results demonstrated are at the fully 

developed region i.e. % /D =80. Several fine grid systems are used for the streamwise 

direction but the streamwise grid does not affect the fully developed profiles o f the 

mean variables. Furthermore with the selected streamwise grid system the results in 

the developing regions (which are not shown in the present dissertation but may be 

found in the study of Jang and Oyibo^^) show reasonable agreement with experimental 

data and other numerical results. The grid system in the radial direction is crucial for 

resolving the details o f the near-wall variation o f turbulent properties. Depending on 

the Reynolds number, the distance to the first grid point from the wall should be 

adjusted to get a reliable convergent solution. In the present study the computation was 

very sensitive to the location of the first grid point away from the wall. The slightest 

change of the first grid position towards the wall often caused a convergence problem 

or a negative turbulent kinetic energy. For Reynolds numbers of 50,000 and 500,000 

with Cj=G.9  and A^;=0.0 in a 120x50 grid system, grid independent results were 

achieved for typical positions of the first grid point of 0.00038 and 0.00004 times the 

pipe radius, respectively. This put at least 10 grid points within the laminar sublayer 

region(y'^<5) and 22 grid points within the buffer region (y‘‘’<40).

The boundary conditions for the mean velocities and pressure are the same as for 

the cases studied with the algebraic turbulence model. The pipe centreline is assumed 

to be an axis of symmetry. Along the wall no-slip conditions are enforced for mean 

velocity components and the turbulent kinetic energy is made to vanish there as well. 

A symmetry condition is implemented for the dissipation rate o f turbulent kinetic 

energy. Thus the finite value of the dissipation rate of turbulent kinetic energy at wall 

is calculated during the iteration procedures. In the cases of Cy <1.0, which are for 

rough walls, the effects of wall roughness are accounted for in the transport equations 

through the turbulent viscosity which is related to the modified dmaping function 

while the wall boundary conditions (at y=0) are approximated by smooth wall
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expression. At the inlet, uniform values for the mean velocity and turbulent kinetic 

energy are specified, i.e. C/o=l, yo=0, kQ=0.005 along the radial direction at two axial 

stations. For the dissipation rate of turbulent kinetic energy the empirical relation, 

eo=Cp^X:o '̂ /̂0.03Æ, is used, where R is the nondimensionalized radius o f the pipe. At 

the exit for all flow properties, except the mean pressure, fully developed conditions 

are specified, i.e. the axial gradient of all flow properties are zero. For mean pressure, 

an arbitrary value is specified, i.e. P = I. The details of the computational geometry, 

boundary conditions, inlet conditions and exit conditions are shown in Figure 4.1.

3. SOLUTION METHOD

The solution method and the staggered grid system used in this Chapter are the 

same as for the cases studied with the algebraic turbulence model in Chapter 3. The 

quantities k and e are calculated at the same grid positions as P . The discretized grid 

positions for the calculation of each of the flow properties are shown in Figure 4.2. 

The turbulent viscosity is evaluated at the same positions as k and e at the end of each 

global iteration process for the whole computational domain using the newly obtained 

mean velocities and turbulence properties. A relaxation method is used for the con

vergence 0 Î ky z  and v ,. No relaxation technique is used for UyV and P . Typical 

relaxation constants are 0.4, 0.4 and 0.3 for e and respectively. Due to the stag

gered grid and the finite difference scheme used for the continuity equation, the resi

dual of a discretized continuity equation always becomes machine accuracy 10“^̂  at 

any stage of the solution procedure, the convergence is checked for the Reynolds- 

averaged momentum equations, the turbulent kinetic energy equation and the dissipa

tion rate equation of the turbulent kinetic energy. A series of grid sensitivity runs were 

performed on nonuniform grids. Grid independence of the solution was confirmed by 

comparing the results for 80x30, 100x40, 120x40 and 120x50 grids. Even though.
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for the fully turbulent region, the results for the 80x40 grid are in good agreement 

with experimental data, to assure the grid independence of the near-wall turbulence 

properties the results of 120x50 are compared with available experimental data. In 

general, for Cj<0.9  with a proper grid system, 250 iterations are sufficient to give a 

convergent solution. But as Cj is close to 1.0 the number of iterations are 

increased. It took 15.9 CPU seconds for one iteration on the UNIX convex machine. 

When the total residual of discretized equations becomes less than 10“  ̂ the iteration 

process is stopped.

4. RESULTS AND DISCUSSIONS

The sensitivity of various turbulence properties to the values of Cj and was 

tested, motivated by a suggestion of Wilcox^® .̂ The modified low-Reynolds tur

bulence model with new computational parameters Cj and A^ should properly predict 

the behavior of near-wall turbulent flows.

4.1 Sensitivity Test of Cj and

In Figure 4.3 the smooth wall experimental data and numerical results of other 

turbulence models^® for the damping function are compared with the results of the 

present calculation for Cy =0.9, A(;=0.0, and Re )̂ =380,000. The model of Lam and 

Bremhorst produces better results than the other turbulence models but fails in the 

region very close to the wall. None of the models tested predicts the near-wall varia

tion of but close examination shows that the present result compares reasonably 

with the trend of experimental data, although this is not as marked further out in the 

boundary layer.
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A numerical approach to model the near-wall variation of itself is rare. 

Based on the author’s review, one case appears to be the modification of the van Dri

est model^ carried out by Miner, Swean, Handler and Leighton^®  ̂ using results from 

the direct numerical simulation of turbulent channel flow reported by Handler, Hen

dricks and L e i g h t o n B y  shifting f  ̂  upward and adjusting the origin o f the wall 

coordinate Handler et al modified the standard van Driest model to give better 

agreement with the result of the direct numerical simulation arriving at the form

f ^ = f o +  (l-/o)(l-exp[-(y+-y  ̂  )/A ])  ̂ (4.23)

where 0.04 and 8 are specified for / q and the effective origin yg respectively. Using 

the above modified van Driest function with =0.115 instead of C^=0.09 the results 

for the near-wall turbulence properties near a smooth wall were improved. In Figure

4.4 the empirical data^®, the result of the direct numerical simulation and the result of 

the modified van Driest formula are compared with the present results for several 

values of Cj.  The modified van Driest model more closely follows the result of 

direct numerical simulation. But of course it is modelled to fit the result of direct 

numerical simulation which is a turbulent channel flow at a low Reynolds number, i.e. 

Re/j=2,215, where is based on the initial laminar centreline velocity and the half- 

with of channel. However equation(4.23) does not include the effect o f rough walls. 

In the present results, the introduction of two new computational parameters into the 

damping function is in good agreement with both the trends of experimental data 

and the results of the direct numerical simulation. The result for Cj = 1 and = 0 

is the same as that o f Lam and Bremhorst’s model. Obviously from Figures 4.3 and

4.4 near the wall the present result with Cj =0.9 compares well with experimental data 

and the results o f the direct numerical simulation.
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Figure 4.5 demonstrates the development of the axial mean velocity. In this Fig

ure the developing axial mean velocity for Re )̂ =380,000 at different radial positions,

i.e. r/i? =0.0, 0.5, 0.75, 0.94 from the inlet to 100 pipe diameter downstream is shown 

and compared with the experimental data of Barbin and Jones^® .̂ Comparing with 

the developing process of mean velocity obtained by using algebraic turbulence model 

(see Figure 3.3) the present result shows that the fully developed flow starts around 

x lD  = 50. The k-E two equation turbulence model is superior to the algebraic tur

bulence model to predict the developing process of turbulent properties. Except for 

the core region and r/i? =0.94 the present results, with Cj close to 1.0 and A(- = 0, 

reproduce the experimental data well. Overall the mean axial velocity is gradually 

approaching to the experimental data of Nikuradse^^ as shown in Figure 4.7. This is 

similar to results obtained with other turbulence models^^ shown in references 16, 17 

and 18.

In Figures 4.6 and 4.7 the radial distribution of mean velocity are shown for Re^ 

= 10,000 and 380,000 respectively. The effect of the mean velocity on Cj are also 

shown together with the experimental data of Nikuradse^^ for a smooth pipe. The 

present results match with the experiment data. As Cj decreases the mean velocities 

near the centreline increases while near the wall they decrease. Higher Cj gives the 

fuller mean velocity profile which is consistent to the result of the algebraic turbulence 

model.

In Figures 4.8 and 4.9 the axial variations o f the turbulent kinetic energy and tur

bulent viscosity with C j  = 0 . 9 ,  0.95, and 1.0 are shown for Re )̂ =380,000 at various 

radial positions. The results are very sensitive to Cj.  Different from the developing 

process of the mean velocity as the Cj increases overall levels of turbulent kinetic 

energy and turbulent viscosity decrease regardless to the radial positions.

Figures 4.10, 4.11 and 4.12 show the sensitivity of mean velocity, turbulent 

kinetic energy and its dissipation rate on Cj and for Rcp =5(X),000. The results in
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these Figures confirm the independence of mean velocity and turbulence properties 

from the values of Aq . The effect of Cj to turbulent kinetic energy and its dissipa

tion rate are discussed in the following Figures.

Figure 4.13 and Figure 4.14 demonstrate the sensitivity o f the near-wall behavior 

of the turbulent kinetic energy normalized by the friction velocity to a wide range 

of values of the computational parameter Cj .  For Re )̂ =50,000 and 500,000 the 

present results are compared with the empirical correlation, i.e. k^=O.05y^, for the flow 

in the laminar sublayer region of smooth walls and several experimental data for 

smooth walls, the scatter of which is very wide. It is seen that for the cases for 0.9 

< C j <  1.0 k^ has the maximum value of 4.5 around y '"'=15, which is in fair agreement 

with the empirical data for smooth walls shown by Patel, et al. In that range, as 

Cj decreases the turbulent kinetic energy slightly increases and the location of the 

maximum value moves closer to the waU. But when Cj is less than 0.9 the maximum 

value o f turbulent kinetic energy decreases and eventually the turning point of tur

bulent kinetic energy disappears. Away from the wall (y'"'=100) all the numerical 

results asymptote to 3.4 which is close to the 3.3 of the empirical data of Patel gf al. 

In the range of 0.0 <C^< 0.2 the turbulent kinetic energy is not sensitive to Cj over 

the entire cross-sectional area of pipe. Figure 4.15 shows the results of smooth 

walls(Cy=1.0) for various Re£>, which are in fair agreement with experimental data.

In Figure 4.16 and Figure 4.17 the variation of turbulent kinetic energy along the 

pipe radius for Rep =10,000 and 380,000 are shown with the experimental data of 

Lawn^^. In the fully turbulent region the numerical data are not sensitive to the com

putational parameter Cj.  Contrary to the higher Reynolds number results, for the 

same Cj  the lower Reynolds number results show that the effect of Cj  penetrates 

farther region from the wall due to the strong diffusion transfer. This is clearly shown 

in Figure 4.18 where the results for a smooth wall are plotted for several Reynolds 

numbers.
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In Figures 4.19 and 4.20 the variations of the dissipation rate of turbulent kinetic 

energy along the pipe radius are demonstrated for Rep = 10,000 and 380,000. For 

different Cj the dissipation rate of turbulent kinetic energy in the fully turbulent region 

is not affected as can be seen. But in the near wall region the dissipation rate o f tur

bulent kinetic energy is very sensitive to the C j , which has aleady been shown in Fig

ure 4.12. The present results away from the wall show reasonable agreement with the 

smooth wall experimental data o f Lawn^® .̂ Figure 4.21 shows the comparisons o f the 

present results for several Rep with Cj = 1 .0  and experimental data o f Lawn.

4.2 Physical Meaning of Cj as a Roughness Function

So far we have demonstrated that the near-wall behavior of turbulence properties 

is very sensitive to Cj but that the turbulence properties in the fully turbulent region, 

except for mean axial velocity, are not affected by C j . Still it is not clear if the vari

ations of turbulence properties with respect to Cj have any pyhsical significance in 

fluid dynamics, and what functional relationship exists between Cj and known physical 

flow properties. To answer these questions we have to go back to the origin of the 

damping factor.

Recalling van Driest’s theory as described in Chapter 2, the flow near transition

ally rough walls has a mean velocity gradient and profile given by

du

3y 1 +-\l l+4K^'*‘\ l - e x p  (-y'^/26) + exp(-60y‘̂ /26^*)]^
(2.25)

  -  (2.26)
0 1+V l + 4 K ^ * \ l - e x p  i-y*/26) + e \p(-60y*/26k.  )]^
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Equations (2.25) and (2.26) reduce to the expressions for the smooth wall (equations 

(2.15) and (2.16)) and the beginning of fully rough wall (equations (2.21) and (2.22)) 

if  k* equals 0 and 60, respectively.

For the k-E two equation approach, the present model with Cy=1.0 and Ap =0.0 

corresponds to the original k-E turbulence model of Lam and Bremhorst. In Figures 

4.22 to 4.25 the variations of w'*' with y"*" as a function o f the roughness parameter, Cy, 

in the semi-logarithmic coordinates and linear coordinates, are compared with van 

Driest’s equation(2.26) and the experimental data of Laufer^  ̂ for smooth walls 

obtained for Rep =50,000 and 500,000 respectively. In Figures 4.22 and 4.23 the 

experimental data of Ligrani and Moffat̂ "  ̂ for boundary layer flow over a rough sur

face are shown. The present results of Cy=1.0, which is the same as the original Lam 

and Bremhorst’s model, reasonably predict the smooth wall data of Laufer and with 

Cj = 0 .8 , the analytic equation(2.22) or equation(2.26) with k* = 60 for the flow near 

the beginning of a fully rough wall. The present results corresponding to the k* of 

van Driest’s theory predicts a little discrepancy in magnitude but it is shown that the 

effect o f the wall roughness results in the shift of the logarithmic velocity profile for 

the smooth wall. The results for the smooth wall with various Rep are also shown in 

Figures 4.26 and 4.27.

One interpretation of the computational parameter Cy is clear: it is related to the 

roughness Reynolds number, and predicts the turbulence properties for the flow 

near smooth- transitionally rough- and fully rough walls. Consequently the introduc

tion of Cj suggests a new near-wall turbulence model for the flow over smooth and 

rough walls. Therefore we now call the computational parameter Cy a roughness 

function. As Cy decreases from 1.0 the surface of the wall is getting rougher and 

rougher, consequently the flow near the wall is stirred up and higher effective wall 

shear stress is obtained. The variation of computed friction velocities with respect to 

Cy for various Reynolds number are shown in Figure 4.28. The friction velocity
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increases as Cy decreases, but for Cy less than 0.2 the friction velocity does not vary 

with Cy. Within the moderate range of the wall roughness 0.2<Cy<1.0 the damping 

factor is still able to predict the turbulence properties very close to the wall, but for the 

very rough wall Cj <0.2 the effect o f the wall damping factor disappears. Recalling 

the theoretical approach shown in Chapter 2, where the beginning of fully rough wall 

is obtained at X:* =60, the present result indicates a much higher roughness Reynolds 

number for the beginning of fully rough wall. By simple comparison of the damping 

factor between van Driest’s model and the present k-z  model we might expect that the 

result o f the present calculation with Cy =0.0 would be comparable with that o f van 

Driest’s equation(2.22). But that is inappropriate because the results o f the present 

k -e two equation model involve transport and history effects of k and e and the empir

ical constants which are appeared in the turbulence modelling process are evaluated 

differently. In this range of C y^ .2 , the wall is so rough that the turbulent phenomena 

are expected to get closer to the wall. This should perhaps explain why is finite 

near the wall(as shown Figure 4.29 and Figure 4.30), while the mathematical form of 

the Vf gives zero at wall.

In Figure 4.31 the skin friction coefficient vs relative roughness size is compared 

with experimental data of Nikuradse^®. The present results are in good agreement with 

the experimental data.

Now, fi*om direct comparison of mean velocity profiles in the logarithmic law 

region fi*om the present k-e  model with those of van Driest’s theory a functional rela

tionship between the new roughness parameter and roughness Reynolds number can be 

found. As shown in Figure 4.32(also in Table 4.1) linear empirical relationships 

between the new roughness parameter Cy and roughness Reynolds number k* are 

obtained by

for Re£> = 50,000
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k* = 250-250Cy (4.24)

for Rc£> = 500,000

k* = 200-200Cy (4.25)

The relationship between Cy and k* gives a different slope depending on the Reynolds 

number.

Figures 4.33 and 4.34 demonstrate the dependence of the near-wall behavior of 

Reynolds shear stresses for different roughness function Cy at Re^= 50,000 and

500,000. Also shown is the Reynolds shear stress of van Driest for the beginning of a 

fully rough wall. In the laminar sublayer region the present calculations with Cj =0.9 

and 0.95 predict the experimental data for smooth walls. The Reynolds shear stresses 

are increased by the effect of wall roughness. In the fully turbulent region the distribu

tion o f Reynolds shear stress is consistent with the experimental data for smooth walls.

In Figure 4.35 at a fixed Cy, i.e. Cj =1.0, it is seen that very close to the wall the 

distribution of Reynolds shear stress is not affected by the Reynolds number but in the 

fully turbulent region the result of Rep =10,000 deviates from the experimental data.

This is because the k-e  turbulence model is modelled with the assumption o f high

Reynolds number therefore the empirical constants used in the k-e  turbulence model 

are obtained firom the experimental data of high Reynolds number flows.

Figure 4.36 and Figure 4.37 show the distribution o f Reynolds shear stress in the 

cross-sectional area for Rep =10,000 and 380,000 and the experimental data of Ligrani 

and Moffat^"  ̂ for boundary layer flow over rough surfaces. Even though the present 

result shows discrepancy with the data of Ligrani and Moffat it is seen that the rough

ness of the wall does not affect the Reynolds shear stress in the fully turbulent regions 

and that the present results match with the experimental data of Laufer for a smooth 

pipe. In Figure 4.38 the results for smooth walls at various Reynolds numbers are 

shown. The numerical results match with the experimental data of Laufer.
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Figures 4.39 and 4.40 show the sensitivities of the ratio of to e with Cy for

Rep =50,000 and 500,000. Also shown are the empirical data of Patel, et al. These 

figures indicate that very close to the wall the rate of increase of the production o f tur

bulent kinetic energy is faster than that of the dissipation rate of turbulent kinetic 

energy, which leads to the increase in the level of turbulence properties in the near

wall region. As one approaches the fully turbulent region balances with e, sup

porting the concept of local equilibrium.

5. CONCLUSIONS

Based on the present study the following conclusions are obtained.

1) A simultaneous solution technique has been successfully tested for a set of fully 

elliptic time-averaged Reynolds transport equations combined with a low- 

Reynolds number k -e two equation turbulence model.

2) By introducing new computational parameters Cy and Aq into a damping func

tion the prediction of the experimental curve of is recovered. It is found 

that the computational parameter Cy has a functional relationship to roughness 

Reynolds number k* and that Cy is inversely proportional to the roughness Rey

nolds number within the moderate range of the wall roughness.

3) In the fully turbulent region overall results obtained show good agreement with 

experimental data for smooth walls. Very close to the wall the introduction of 

the Cy less than 1.0 predicts high values of near-wall turbulence properties com

pared with the experimental data from smooth walls. This high level of tur

bulence properties is the characteristics of turbulence properties near rough 

walls. Due to the higher surface drag on the rough wall the mean velocity 

profiles on rough surface become less full than those obtained on a smooth wall. 

In the all o f the cross sectional ares the mean velocity, different from other
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turbulence properties is sensitive to the Cy.

It is concluded that the new damping function f  have the ability to predict the 

near-wall turbulence properties on both the smooth and rough walls.
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T a b le  4 .1  C o m p a r is o n  o f  r o u g h n e s s  p a r a m e t e r  Cj (k-e  t u r b u l e n c e  m o d e l)  

a n d  r o u g h n e s s  R e y n o ld s  n u m b e r  k* ( v a n  D r i e s t ’s  th e o r y )

k ~ e T urbu lence M odel

R e2)== 500,000 R e2)= 50,000

Cy k* C'y k*

1.0 5 1.0 2

0.95 16 0.95 14

0.9 30 0.9 24

0.8 60 0.8 42

0.7 80 0.7 53

0.6 103 0.6 80

0.5 125 0.5 96

0.4 150 0.4 114

0.3 178 0.3 137

0.2 196 0.2 152

0.1 198 0.1 158

0.0 200 0.0 158
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Chapter 5 

Summary and Conclusions

In this chapter, the results of this dissertation are summarized and the main con

clusions of the study are outlined.

1. SUMMARY

This dissertation is concerned with modelling of the turbulent flow near smooth 

and rough walls.

In Chapter 1, the merits and demerits of turbulence modelling are briefly intro

duced including near-wall turbulence modelling for the flow near smooth and rough 

walls.

In Chapter 2, starting from van Driest’s theory for turbulent flow near a smooth 

wall a roughness parameter is introduced into the damping factor of van Driest’s 

theory. The range o f the new roughness parameter is from 1.0 to 0.0 corresponding to 

cases of turbulent flow over hydraulically smooth walls to that over fully rough walls, 

consistent with van Driest’s theory. Comparisons of the two theories are carried out for 

the universal constant, mixing length, mean velocity and Reynolds shear stress.
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In Chapter 3 the theory developed in Chapter 2 is verified by testing it in the case 

of developing turbulent flow in a pipe. The time-averaged Reynolds momentum 

equations are combined with the algebraic turbulence model(eddy viscosity) obtained 

in Chapter 2. Using a simultaneous solution method all flow properties are solved, 

line-by-line marching, from pipe inlet to exit. The effects of radial variations and 

near-wall variations of turbulence properties on the roughness parameter are demon

strated and compared with the results of van Driest’s theory and available experimental 

data for the smooth wall. It is found that the new roughness parameter is inversely 

related to the roughness Reynolds number. Even though the algebraic turbulence model 

is poor at predicting the developing process of the mean velocity field, the numerical 

results in the fully developed region are in good agreement with experimental data.

In Chapter 4 the idea of the new damping factor is applied to a more flexible and 

popular higher order turbulence model. A low-Reynolds number k~z two equation 

turbulence model o f Lam and Bremhorst is modified to account for the effect o f rough 

surfaces and tested in the case of developing turbulent flow in a pipe. Two computa

tional parameters Cj and Aq are introduced into the damping factor of the damping 

function /^ .  This basically eliminates the singularity problem in the original model 

of Lam and Bremhorst and accounts for the near-wall variations of the turbulent flow 

on smooth, transitionally rough and fully rough walls. By combining the new damp

ing factor with the k -e turbulence model the range of the application for the roughness 

on the wall is increased. In the near-wall region the experimental trend of a damping 

function in the low-Reynolds number turbulence model is recovered by values of

O .SSC j^ .9 . In the fully turbulent region overall results obtained show good agreement 

with experimental data and are favorably compared with numerical results of other tur

bulence models.
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2. CONCLUSIONS

Based on the present results of the theoretical approach for turbulent flow near 

smooth and rough walls the following conclusions are obtained:

1) A new damping factor is suggested to predict turbulent flows near transitionally 

rough walls. A functional relationship between roughness Reynolds number 

and the new roughness parameter is obtained.

2) In the logarithmic law region the modified mean velocity profiles and Reynolds 

shear stress reproduce those of van Driest’s formula.

Based on the present results of the computation of the algebraic turbulence model 

for a developing turbulent flow in a pipe the following conclusions are obtained:

1) A simultaneous solution technique was successfully employed for the Reynolds- 

averaged momentum equations combined with the algebraic turbulence model.

2) By introducing a new roughness parameter Cj into the damping factor of van 

Driest’s model for a smooth wall a new algebraic turbulence model was obtained 

which predicts the turbulent flow near smooth, transitionally rough and fully 

rough walls. The correlation between the roughness Reynolds number k* and 

computational parameter Cj was found to be an inverse relationship within a 

moderate range of wall roughness.

3) In the logarithmic region the overall results obtained showed good agreement 

with experimental data for flow near smooth walls. Very close to the wall the 

introduction of the new roughness function predicts higher values of turbulence 

properties compared with the experimental data from smooth walls. It is con

cluded that the new algebraic turbulence model has the ability to predict the 

near-wall mean velocity and Reynolds shear stress on the smooth, transitionally 

rough and fully rough walls.
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Based on the present results of the computation using the modified low-Reynolds 

number k -z  two equation turbulence model the folowing conclusions are obtained:

1) A simultaneous solution technique was successfully employed for a set of fully 

elliptic Reynolds-averaged differential equations combined with a low-Reynolds 

number k -z two equation turbulence model.

2) By introducing new computational parameter, Cj and into a damping func

tion the prediction of the experimental curve of is improved. It is found 

that the computational parameter Cy is inversely proportional to the roughness 

Reynolds number within moderate range of wall roughness.

3) In the fully turbulent region overall results obtained show good agreement with 

experimental data for smooth walls. Very close to the wall the introduction of 

the Cy predicts higher values of near-wall turbulence properties compared with 

the experimental data from smooth walls. This high level o f turbulence pro

perties is the characteristics of turbulence properties near rough walls. Due to 

the higher surface drag on the rough wall the mean velocity profiles on rough 

surface are less full than those obtained on a smooth wall.

The functional relationship between Cy and k* obtained through the comparisons 

of the logarithmic mean velocity profiles calculated from theory, an algebraic tur

bulence model and a low-Reynolds number k -e two equation model are shown in Fig

ure 5.1 and Table 5.1. Over all it shows the linear relationship between Cy and k*. 

It is concluded that the new damping function f  ̂  has the ability to predict the near

wall turbulence properties on both the smooth and rough walls.

In the present analysis the new roughness parameter Cy is shown to be related 

only to the roughness Reynolds number k* . But the number of parameters describing 

roughness is extraordinarily large owing to the great diversity of geometric forms. By 

adjusting Cy to the logarithmic mean velocity profile of any type of surface conditions 

the new model may be able to predict the turbulent flow near any roughened surfaces.
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The limited comparisons to experimental data over rough walls carried out here are 

encouraging, but more detailed verifications must be performed before the utility and 

accuracy o f the present approach is proven.
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Appendix

Discretized Equations

The following finite difference equations are written on the nonuniform grid sys

tem for the equations(3.2)-(3.4).

Continuity Equation:

^i,j -  V j.j-l J_
dXj n rvj+i -  rv;

=  0 (A-1)

X  -Momentum Equation:

+ [V ^ , 0 .0]- '^  + [ - v ^ , 0.0]
n -  n - i ''i+i -  n
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+
Re£, dXj+dXj^i V+l

+ 1 1 1
R&d  n  r v / + i “ r v , -

(l+ v ,^ )rv ,,.i U j+ij -  ^i,j _  ^i+Xj+i -  ^ i+ ij 
î+i - n dXj+dXj^i

1 1 1
(l+V tse)^i E i d - l E t h L ^

-  n-1 + ^ y + l

r-Momentum Equation:

lu ^ ,  0.0]'%  + [-^ov. O-O]-dXj + dXj + dXj^i

+ [V i^ ,0 .0 ]L i— L i L  + [_y. 0.0]
»n».   i n t .  .

-  ^ i+ lj
rvj -  rvj_i rvi^i -  rvj

n  -  n - i
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+ __1 1_
Rc£) dKj ~ (1+V,sw)

^i.j -  K ./-1
dXj +dXj_i

__1 1_
Rcp dXj

Uj.j -  
0 - n - i  "

+ 1 1 1
Rqd rvi ri -  r,_i rvi-rv,_i

where the operator [A ,B] is equivalent to A M A X l{A ,B ) in the computer 

language FORTRAN. The average values are calculated by the linear interpola- 

ton from the values in the neighbouring grid positons.

(A-4)

1 (r; -  rv; )
+ 2 ^ :— ^ ( ^ ' - 1 . ,  + -  V i,-Ù

(A-5)

And the average values for the turbulent viscosity are
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, n+1 -  ^ i+ i . _ 
V fv = ^ ^n'+ij+i)-"1:--------T "^i+l “

, (n+ i -  ^i+i) .
^tnm  = ( ^ t i , j - l  -  ^ i i + l j - l )  — -----— ----- +

^i+1 ' i

1
V '-  = d x ^ + d X j~  +

1   . 2 Æ ,_ i
dKj +  dKj_i

(0  -  m )
V(os = (V u - lj -V n j)  — — ------+ v,;,y
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