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ABSTRACT

Testing A Theory
On Turbulent Flow Near Smooth and Rough Walls
by
Kyung-Soo Jang
Advisor

Gabriel A. Oyibo

Submitted in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy (Aeronautics & Astronautics)

January 1994

A theoretical analysis and turbulence modelling for the flow near smooth and rough

walls is presented.

In Chapter 2 of this thesis, a theoretical analysis which will yield a continuous velo-
city and shear distribution for turbulent flow near smooth, transitionally rough and fully
rough walls is described. This analysis introduces a new roughness parameter C; whose
value determines velocity profiles and shear distributions which represent turbulent flow
near smooth, transitionally rough and fully rough walls. The expressions developed for
the velocity and shear stress are compared with those of van Driest and available experi-

mental data.

In Chapter 3, the algebraic turbulence model obtained in Chapter 2 is implemented
within a newly developed computational code which solves the fully elliptic time-
averaged Reynolds transport equations. A developing turbulent flow in a pipe is selected
for a test problem. The developing mean velocity and near-wall variations of tur-

bulence



viii

properties in the fully developed region are demonstraied and compared with van Driest’s

theory and available experimental data.

In Chapter 4, a computational code to solve fully elliptic Reynolds-averaged momen-
tum equations are combined with a newly developed low-Reynolds number k-& two equa-
tion turbulence model is developed and solved for the developing turbulent flow in a bipe.
Two computational/roughness parameters C; and A¢ are introduced into the damping fac-
tor of the damping function in a low-Reynolds number k- turbulence model. This new
low-Reynolds number turbulence model also predicts the variations of the turbulence pro-
perties for the flow near smooth, transitionally rough and fully rough walls. The com-

putational results are compared with van Driest’s theory and experimental data.

Using the theory described, an algebraic turbulence model and a low-Reynolds
number k-€ two equation model a developing turbulent flow in a pipe is tested. The
discretized governing equations are simultaneously solved for all flow variables (U,V,P
for algebraic model and U,V P,k and € for k-€ two equation model) using a line-by-line
marching iterative solution technique for streamwise distances up to 100 pipe diameters

for several bulk Reynolds numbers.
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Chapter 1
INTRODUCTION

1. INTRODUCTION

The fluid flow passing through many engineering systems of practical interest is
turbulent. Turbulence in fluid flow has some statistical or non-deterministic charac-
teristics. Such statistical characteristics of turbulent flow variables may be
represented by two components, namely the mean quantity and the fluctuating quantity.
When the time-averaged Reynolds transport equations are used to describe turbulent
flows some of the important information about the dynamics of turbulence is lost and
the number of unknown variables exceeds the number of equations to be solved. In
order to provide the necessary closure to the governing equations, relations between
the Reynolds-stresses and the mean velocity components have to be prescribed. The
type of turbulence modelling depends on the assumption made to describe the
Reynolds-stress tensor. In general it can be divided into two categories. The first one
follows the turbulent or eddy viscosity concept proposed by Boussinesq in order to

mimic the laminar flow analysis. The second one uses additional transport equations



with the Reynolds-stresses themselves as dependent variables. The applications and

limitations for the representative models in each category are briefly described below.

1.1 Eddy Viscesity Model

Since Boussinesq! described the gradient transport idea many engineers have used
it. It assumes that the Reynolds-stresses can be related to the mean velocity gradient

via a turbulent or eddy viscosity:

,—r o, dv
- = | — + 5 1.1

p uy ut { a y a X} ( )
Therefore this type of turbulence model relates the turbulent stress to the mean rate of

strain in a manner similar to the relationship between the stress and the rate of strain

in laminar flow.

1.1.1 Zero Equation Model

One of the simplest and most successful models of the zero equation models is
the one based on the Prandtl’s mixing length theory?, which relates the turbulent vicos-

ity to a mixing length multiplied by the mean velocity gradient.

o

3 (1.2)

we=pi?

where a mixing length, [, is a characteristic length scale of turbulence and is specified
as an algebraic function of local flow properties. Prandtl’s development led to the

result that the mixing length is proportional to the distance in the transverse direction,

Yy

=Ky, K=041 ° (1.3)



Its applications are confined to simple flows where the turbulence is influenced by
the local properties of the velocity field. This model implies that turbulence is in
local equilibrium throughout the flow field which means that the dissipation and pro-
duction of turbulent energy are the same at each point in the flow. It also requires the
turbulent viscosity y, to be zero whenever the mean velocity gradient is zero, which is
not true under all circumstances. Therefore the mixing length hypothesis cannot
account for all the transport and history effects of turbulence. The mixing length is

obtained through empirical correlations only.

1.1.2 One Equation Model

The deficiency of the mixing length model can be corrected by introducing a tran-
sport process partial differential equation. These "one equation” models are the sim-
plest ones accounting for the transport and history effects of turbulence. An addi-
tional partial differential equation is provided which relates the transport of turbulent
kinetic energy to the turbulent velocity scale. The model uses the eddy viscosity con-
cept, together with dimensional analysis to obtain the so-called Kolmogorov3-Prandtl?

expression.

w,=pk V2 (1.4)

where the turbulent kinetic energy & is defined by:

k=—21—(177+\7f+»77) (15)

and w2, v’2 and w’? are the components of normal intensities in each direction. The
turbulent viscosity no longer becomes zero when the mean velocity gradient is zero.
In this model, as in the zero equation model, the mixing length is evaluated by an

algebraic expression which depends only on the local flow parameters. In general the



application of the one equation model is limited to simple shear layer flows and the

result often does not show an improvement over a zero equation model.

1.1.3 Two Equation Model

Two equaﬁon models involve an additional transport equation which provides the
turbulence mixing length. Among two equaﬁon models, the k-& two equation model
using a transport equation for the turbulent kinetic energy and one for the dissipation
rate of the turbulent kinetic energy has become the most popular because the dissipa-
tion rate equation requires no extra terms near the wall. The dissipation rate of tur-

bulent kinetic energy € is defined as:

32 ,
€='k—l— (1.6)

And the dimensional analysis of Prandtl and Kolmogorov defines the tufbulent Viscos-
ity as:
k2
M =C pp=— (1.7)
where C, is an empirical constant usually given by 0.09. Many engineers and scien-
tists have made computations using these turbulence models for solving complex tur-

bulent flows and in many instances obtained good comparisons with experimental data.

1.2 Reynolds-Stress Model

Even though the k-e& two equation model is still used for solving complex tur-
bulent flows in many engineering applications higher order closure models are neces-
sary to get more realistic results. Experimental evidence shows that the linear relation
between the Reynolds-stress and the mean rate of strain is inaccurate and that the
assumption of a scalar turbulent viscosity cannot be expected to be universally valid.

Analysis of such cases requires the solution of the Reynolds-stress equations where the



Reynolds-stresses themselves are dependent variables of partial differential equations.
Such modelling requires the solution of three or more transport equations in addition to
the time-averaged momentum and continuity equations. Although Jcomplicated and
tedious they can be potentially more useful and less problem dependent. To date
these models have been used as turbulence research tools and are still under develop-

ment.

For the calculation of turbulent stresses and heat fluxes in incompressible flow
Rodi* described some of the available models and presented typical examples of calcu-
lations relevant to aerospace problems. Marvin® broadly reviewed the status of tur-
bulence modelling for computational aerodynamics and discussed the performance of
different models in various compressible flow problems. The two equation models
seem to perform better for separated flows especially in the recovering regions down-

stream.

1.3 Near-Wall Turbulence Modelling

1.3.1 Turbulence Modelling Near Smooth Walls

In the region very close to the wall the magnitude of turbulent viscosity dimin-
ishes and becomes comparable with the laminar viscosity. Thus, a more detailed
hypothesis for {1, is needed to account for the region near the wall. The hypothesis
for this region is especially important, because very steep gradients of mean velocity
and other turbulent variables exist near a wall, and also because the shear stress and
fluxes at the wall are of great practical interest. There are many versions of models for
the turbulent viscosity near a smooth wall. Most of them come from the universal
logarithmic velocity distribution law of the wall and an assumption of uniform shear
stress. All such expressions have been designed in accordance with the experimental

data in the absence of pressure gradient, non-uniform fluid properties and mass transfer



at the wall. Several authors(Reichardt®, van Driest’ and Deissler®) have suggested velo-
city profiles which vary smoothly and fit better to experiments in such cases.

For higher order near-wall turbulence models the Reynolds-stress transport equa-

tions® 14

, which are closed by either using wall functions or introducing a wall effect
into the pressure-strain terms, have more flexible applications than others. However
their ability to predict near-wall Reynolds-stresses are not quite as good as those of

15-18  These higher order models require more transport equa-

two equation models
tions to be solved, which are either very expensive to calculate or often exceed the
limits of computers. The k-€ two equation model'>!? is one of the most popular
among those in the two equation model family but its usage is limited only to the fully
turbulent region in which the Reynolds number is sufficiently high, so that the eddy
viscosity can be assumed to be isotropic. This requires an e.mpirical wall function®® to
bridge the region between the wall and the fully turbulent region away from the wall,
in which the most significant variations of turbulence properties occur. Low-Reynolds

number k -€ two equation models eliminate the need for wall functions and model the

turbulent viscosity directly to account the existence of the wall.

Patel, Rodi and Scheuerer?® extensively tested eight different two equation, low-
Reynolds number turbulence models to compare their ability to predict the near-wall
behavior of turbulence properties. It was concluded in their studies that the models of
Launder and Sharma®!, Chien?? and Lam and Bremhorst?, which are based on k-
model, and that of Wilcox and Rubesin?*, which is based on k-w model yield compar-

able results and perform considerably better than the others.

1.3.2 Turbulence Modelling Near Rough Walls

Many practical engineering structures cannot be regarded as being hydraulically
or aerodynamically smooth. The resistance to flow caused by the existence of rough

surfaces is generally larger than that obtained by the smooth wall approximation.



Therefore experiments of such flows began very early 230,

A comprehensive
review of the numerous earlier expérimental results is made by Hopf?®. Systematic and
extensive measurements on rough pipes have been performed by Nikuradse®’, who
focused on the behavior of turbulent flow on the rough walls by measuring pressure
drop and velocity profiles in pipes roughened with tightly glued sandgrains. In experi-
ments using a rectangular channel with the upper surface roughened and the other
sides smooth, Schlichting®! first proposed the equivalent sandgrain roughness k, con-
cept, which is related to the size of the sandgrain in Nikuradse’s experiment. The
equivalent sandgrain roughness of Schlichting was used to relate his skin friction
results to the results obtained by Nikuradse for the sand roughened pipes. Schlichting

divided the wall roughness into three regimes, i.e. the hydraulically smooth, the transi-

tionally rough and the completely rough regimes:

O<k« <5 hydraulically smooth
S5<k« <70 transitionally rough (1.8)
k«>70 completely rough

where the roughness Reynolds number k« is defined by the friction velocity u.,

equivalent sandgrain size k;, and kinematic viscosity of fluid v.

Using experimental data the relation between the resistance formula and the velo-
city distribution, which was found earlier in the case of smooth pipes, could be
extended to the case of rough pipes. But the theoretical approach to the laws of fric-
tion for rough pipes is frustrated by the large number of parameters describing rough-

ness due to the diversity of geometric forms.

In general there are two approaches which have been used in formulating the
required roughness models: the classic equivalent sandgrain roughness approach and
the discrete element approach. The problem using the equivalent sandgrain roughness
approach is determining the roughness Reynolds number k. for a specific surface of

interest so that Nikuradse’s experimental data can be used. Bettermann>2, Dvorak>>,



Simpson>*, Dirling35, Dalle Donne and Meyer’® used the equivalent sandgrain concept
to correlate thé roughness on the wall. Later, Schlichting’s roughness experiment was
re-evaluated by Coleman, Hodge and Taylor>’. They showed that the original skin
friction coefficients are higher than their corrected values by amounts ranging from 0.5
to 73 percent, while the original equivalent sand roughness values are higher than their
corrected ones by 26 to 555 percent. Sigal and Danberg>® used the corrected data to
correlate the roughness density effect on the turbulent boundary layer flow. The
equivalent sandgrain roughness concept has been used in predicting turbulence through
modeling methods such as integral methods and differential (finite difference) methods.
The integral methods generally account for roughness through modified velocity
profiles, together with skin-friction and Stanton number correlations based on the
. sandgrain roughness Reynolds number (Bettermann’2, Dvorak®?, Simpson®*, Dirling®?,
Dalle Donne and Meyer’, Koh®). Differential methods use modified eddy viscosity
formulations to account for surface roughness, based on the equivalent sandgrain

roughness (Healzer*®, Cebeci and Chang?!, Ligrani*?).

Another approach to the modelling problem to account the roughness effects is
the discrete element method, in which the effects of a collection of individual rough-
ness elements on the flow are generally considered by including a form drag in the
momentum equation and accounting for the blockage effect of roughness elements on
the flow. In the same paper in which Schlichting introduced the equivalent sandgrain
roughness concept, he proposed that the flow resistance of a rough surface be divided
into two components: that due to the form drag on the roughness elements and that
due to the viscous shear on the smooth surface area between the roughness elements.
Some investigators have used this method coupled with &, influences on the turbulence
model(Hodge and Adams®, Lin and Bywater“, Christoph and Pletchcr45). Others (Fin-
son and Wu*®, Finson and Clark?’, Finson*8, Taylor, .Coleman and Hodge"'g'so, Hosni,
Colemann and Taylor’!, Scaggs, Taylor and Coleman®?) have used the discrete element

approach in a manner in which there is no dependence on the equivalent sandgrain



roughness concept.

In the present study the effects of wall roughness are considered by introducing a

roughness parameter into the damping function originated by van Driest’.

1.4 Computational Techniques

One representative numerical method for solving steady state transport equations
is the SIMPLE(Semi-Implicit Method for Pressure-Linked Equations) algorithm53. It
uses a form of the relaxation method and a segregated solution technique in which the
pressure and velocity fields are solved separately. Since Patankar and Spalding first
described the SIMPLE algorithm to solve the parabolized Navier-Stokes equations it
has been continually developed for over a decade, yielding many versions:
i)SIMPLER’*, FIMOSE® ezc., depending on the method of updating the pressure
i) QUICK?S, QUICKER57, etc., depending on the difference scheme used to discretize
the convective terms iii)SIMPLEC>8, CTS-SIMPLE™, ezc., depending on the applica-
tion of turbulence models. Even though the SIMPLE algorithm produces very stable
computational solutions its convergence rate is not satisfactory. A significant number
of numerical studies have been successfully carried out using one of the family of
SIMPLE algorithm for complex geometries and turbulent flow problems including

one®? of the present author’s works.

A kind of SIMPLE algorithm33—% has been used by Martinuzzi®!, Martinuzzi and
Pollard®?, Pollard and Martinuzzi®? to test a total of 11 turbulence models, including a
standard k-€ model with a wall function!®, a low-Reynolds number model of Lam and
Bremhorst?, four algebraic stress models and five Reynolds stress models with and
without wall terms for a developing turbulent pipe flow. Among them the results of
the low-Reynolds number turbulence model of Lam and Bremhorst are in better agree-

ment with experimental data than the results obtained from other turbulence models.
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Other approaches for solving the resulting set of equations include a simultaneous
solution technique like the method used in the present study. It simultaneously solves
for all flow properties along lines pexpendicular to the streamwise direction, line-by-
line marching to the downstream direction. The applications of -simultaneous solution
techniques are shown in Jang and Vradis®, Benston and Vradis®, Vanka®®, Rubin and
Reddy®’, Zedan and Schneider®®. The efficiency and accuracy of the simultaneous
solution method is well verified. But most of above applications of the simultaneous
solution technique were for laminar problems except for Jang and Vradis® who solved
for the flow in a developing turbulent planar jet with various turbulence models®
implemented in the parabolic governing equations. Vanka’® also demonstrated the
simultaneous solution method with a multi-grid technique for various practical and
‘complex flows including a turbulent flow in an axisymmetric pipe with a sudden
expansion. But the attempt to solve for all flow properties in a coupled form was not
successful because the multi-grid system combined with a wall function in the k-€ tur-
bulence model failed to achieve a convergent solution. Consequently the solution of
the £ and € equations must be decoupled from the momentum and continuity equa-
tions. The strongly coupled source forms for the turbulent flow equations tend to
cause divergence and instability of the numerical scheme 70-72, Using the simultane-
ous solution technique the present author recently succeeded in solving for all the flow
properties in a low-Reynolds number k-€ two equation turbulent model describing the

7375 and in a channel’®. The near-wall variations

developing turbulent flows in a pipe
and the developing processes of the turbulent properties such as the time-averaged
mean velocities, turbulent kinetic energy, its dissipation rate and Reynolds-stresses

were demonstrated in detail and compared well with available experimental data.

To analyze a fluid flow in which the pressure gradient is not constant, fully ellip-
tic transport equations are essential’®. The transport equations governing a developing
turbulent flow are inherently fully elliptic and characterized by strongly coupled forms

and nonlinearities. Solving simultaneously for all flow properties in such strongly
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coupled partial differential equations is physically more appropriate than using a segre-

gated or decoupled solution method.

2. OBJECTIVES

This study is concerned with i) an analytical approach to develop mathematical
forms for an algebraic turbulence model and a low-Reynolds number k-€ two equation
model, which account for the flow near smooth and rough walls and ii) the develop-
ment of computational codes for an algebraic turbulence model and a low-Reynolds
number £-€ two equation turbulence model which simultaneously solve all flow pro-
perties in a developing turbulent pipe flow using a line-by-line marching iterative

solution technique.

The main objective of this thesis is to develop turbulence models capable of accu-
rately describing the behavior of turbulence properties for the flow near smooth, transi-
tionally rough and fully rough walls. Two turbulence models are developed; one an
algebraic model based on theoretical analysis and the other a k-€ low-Reynolds
number turbulence model based on numerical simulations combined with a new wall
damping function. Both of these models are supposed to handle the entire range of tur-
bulent flow from the wall with various kinds of roughness to the fully turbulent region.
The models introduce new roughness parameters, which are related to the roughness

Reynolds numbers. The specific objectives are:

i) To develop analytical expressions for a continuous, smooth velocity profile, a tur-
bulent or eddy viscosity, and the Reynolds-shear stresses for turbulent flow near

smooth, transitionally rough and fully rough walls.

iil) To verify the accuracy of these analytic expressions by comparing with those of

van Driest’s, since it is a similar formulation for flow over rough surfaces, and
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available experimental data.

iii) To verify the accuracy of the developed algebraic turbulence model by incorporat-
ing it into a newly developed elliptic code and solving simultaneously for all flow
properties in the time-averaged Reynolds transport equations for developing tur-

bulent flow in a pipe.

iv) To develop a low-Reynolds number k-¢ turbulence model based on the idea of

the theoretical analysis for the algebraic turbulence model.

v) To develop a new fully elliptic code to solve the time-averaged Reynolds tran-
sport equations and k-€ two equations in which the new low-Reynolds number

turbulence model is implemented.

vi) To develop a simultaneous solution technique for a developing turbulent flow in a

pipe using a line-by-line marching iterative solution method.

In the beginning of the study the author did not have any idea of the turbulent
flow over rough surfaces. He had studied carefully the original k-€ low-Reynolds
number turbulence model of Lam and Bremhorst. Initially a quantity C; was intro-
duced into the damping function f, as a purely computational parameter to help the
convergence of the _k -€ model equations. The results showed that with a given set of
boundary conditions computations agree well with other numerical and experimental
results for certain range of C;. Further investigations revealed that C; has some phy-
sical meaning. It was found that it can serve as a measure of the wall roughness for a
given turbulent flow. This encouraged the comparison with van Driest’s theory, in
which continuous velocity and shear distributions for turbulent flow near smooth and
rough walls were studied. An empirical relationship was eventually developed to
relate C; with the roughness Reynolds number k. based on the friction velocity, u.,

equivalent sandgrain roughness scale k, and kinematic viscosity of fluid v.
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3. TOPICS OF THE PRESENT WORK

In Chapter 2, "Theoretical Approach”, a theoretical analysis which will yield a
continuous velocity and shear distribution for turbulent flow near smooth, transitionally
rough and fully rough walls is developed. The results for the mean velocity and shear
stresses are compared with those of van Driest’s analysis and available experimental

data.

In Chapter 3, "Computation 1: Algebraic Turbulence Model", the algebraic tur-
bulence model is tested for developing turbulent flow in a pipe. Comparisons are

carried out with the results of theoretical analysis and experiments.

In Chapter 4, "Computation 2: k-&¢ Low-Reynolds Number Turbulence Model", a
numerical code using a simultaneous solution method to solve the Reynolds transport
equations, combined with a newly developed low-Reynolds number k-€ two equation
turbulence model is developed. The developing turbulent flow in a pipe is used to
test this model and the results are compared with the results of theory and experimen-

tal data.

The "Summary and Conclusions" are presented in Chapter 5.
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Chapter 2

Theoretical Approach

1. INTRODUCTION

Parts of many practical engineering systems, such as re-entry vehicles, missiles,
air craft, ships, turbines, heat exchangers, piping networks and atmospheric flows, can-
not be regarded as having aerodynamically or hydraulically smooth surfaces. The resis-
tance to flow caused by turbulent flow on rough walls is larger than that for turbulent
flow on smooth walls. Therefore accurate predictive models for turbulent flow over

rough surfaces are of significant interest.

In the present study a theory which yields a continuous velocity and shear distri-
bution for turbulent flow near smooth and rough walls is developed. This analysis
introduces a roughness parameter C; into van Driest’s damping factor’ for a smooth
wall. The parameter is related to the roughness Reynolds number £+« and permits the
van Driest model for turbulent flow near a smooth wall to be modified to account for
the effect of wall roughness. The expressions developed here for the mean velocity and

shear stresses are compared with those of van Driest’s theory and available
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experimental data. Comparisons of mean velocity profiles in the logarithmic law region
between the present theory and van Driest’s show that the roughness parameter C; is
inversely proportional to the roughness Reynolds number k.. In the fully turbulent
region the shear swresses determined by the present theory agree well with those from

van Driest’s theory and experimental data.

2. THEORETICAL APPROACH

2.1 Van Driest’s Analysis

For the flow near an oscillating flat plate Stokes’’ showed that the velocity profile
has the form of a damped harmonic oscillation of the plate, the amplitude factor of
which is exp(-y /A), in which A is a constant that depends upon the frequency of
oscillation of the plate and the kinematic viscosity v of the fluid. When the plate is

fixed and the external fluid oscillates relative to the plate’s’°

, the factor [ 1 - exp (-y
/A) 1 must be applied to the fluid oscillation to obtain the damping effect on the
smooth wall. Van Driest’ first introduced this damping factor into expressions of the
universal constant and mixing length of turbulence modelling to take into account the
existence of a smooth wall. The total mean shear stress t for turbulent flow is

identified as

= u(%‘y‘:) - pr 7 @.1)

where & is the mean velocity parallel to the wall, ¥” the instantaneous fluctuation of
velocity in the direction of stream, v’ that in the direction normal to the wall, y the
length scale normal to the wall and measured positive from the wall, p the density of
the fluid, and u the viscosity of the fluid. The first term on the right-hand side of

equation(2.1) represents the effect of molecular viscosity on the mean flow whereas the
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second term is a Reynolds-stress. According to Prandtl’s mixing length hypothesis?

it is written as

T= "(‘a‘y“) + me(

(2.2)

where K represents a universal constant. Therefore the expression due to van Driest

becomes:

7= u(%f') + pK 2y 1-exp(-y/A Hz(éz)2

oy

where the presence of wall modifies the universal constant:

k =K [1 - exp(—y/A)]
and the mixing length must be changed to

[ =Ky[l — exp(-y/A)]

It is convenient to write equation(2.3) in dimensionless form as follows:

wre R o N, /Py
V1,/p v

where T, is the shear stress at the wall. Equation(2.3) becomes

T ou*t

— =

Tw dy*

) + K21 - exp(-y*/A)]

(2.3)

(2.4)

(2.5)

(2.6)

2.7

in which A« is van Driest’s constant of turbulence and is equal to 26. Furthermore,

k =K [1 - exp(—y*/A)]

and

(2.8)
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I = Ky*[1 - exp(—y*/A«)] 2.9

where [* = 1, /p I/v. According to equation(2.1) the Reynolds-stress T, is obtained
from

3

T= u(ay)+t, (2.10)

in which 1, = —-p#@’v". Hence, with equation(2.6),

+
T, =1 -rw(g‘y‘+) @.11)
or
% .t ,ou’
TG 2.12)

The eddy viscosity W, is obtained from

Ty By g e U
T-u(ay)+ux(ay)— (utp, X m )(ay+) (2.13)
so that
Ky T ., dut
— = [(—) -1 2.14
ol (el (2.14)

For boundary layer flow with zero pressure gr»adient condition, dt/dy = 0 at the wall
and therefore T = t,, near the wall. Hence equation(2.7) yields the mean velocity gra-

dient near the wall in the form

ou* 2

(2.15)

I* 11K 1—exp(—y /A2
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From this the well-known van Driest velocity profile for the turbulent flow near a

smooth wall is ob.tained as

+

L 2dy* )
u = | (2.16)
0 1+V1+4K 2yt 1—exp(-y A«

where K is the von Karman constant which is equal to 0.4. The Reynolds shear stress

and eddy viscosity become, from equations (2.12) and (2.14), respectively,

T +
——’—=1—{a“ } (2.17)
Tw ay+
My 1
LI -1 2.18)
H out (
oyt

Van Driest also proposed analytic expressions for the flow near a transitionally
rough wallv and the beginning of a fully rough wall. For the flow near a beginning of
fully rough wall the wall damping effects in equations (2.8), (2.9), (2.15) and (2.16)
disappear, therefore the universal constant, mixing length, mean velocity gradient and

profile become
k=K (2.19)

I* =Ky* (2.20)

u* _ 2 2.21)

Iyt 1+V1+ Ky

which integrates to
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. 1] 1-V1+eryt? ———”
ut = -—{ Iy + 1n[2Ky+ +V1+ QKy* )] (2.22)

For the flow region under the viscous influence of the wall, where the roughness Rey-
nolds number k. (=\T, /pk,/v ) is less than 60, and k, is the average roughness size,
the nearness of the wall still shows some effect through viscous damping. In this
regime of wall roughness van Driest introduced a disturbance factor which will offsets
the damping factor owing to the roughness. The proposed universal constant and

mixing length are

k = K[1-exp(~y*/26) + exp(=60y*/26ks )] (2.23)

I" = Ky*[1-exp(—y */26) + exp(—60y */26k+ )] (2.24)

And the mean velocity gradient and profile are

ou” _ 2 (2.25)
" 1+V1HK Y[ 1-exp(=y*/26) + exp(—60y*126k. )]
y+ 2dy+
ut= | . (2.26)
0 1+V1+4K [ 1—exp(~y*/26) + exp(—60y */26k+ )]?

Equation(2.25) and (2.26) give expressions for a smooth wall and the beginning of a

fully rough wall if 4« is O or 60, respectively.

The results shown in the above analysis follow the experimental data quite well

for the entire region including the viscous sublayer region (O<y*<5), and the
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transitionally

(5<y*<60) and fully turbulent regions (y*>60). The results of the above analysis are
approximately valid with a streamwise pressure gradient because the shear siress near
the wall is approximately equal to the wall stress. For a smooth wall, the asymptotic
curves in the laminar sublayer region and in the fully turbulent flow region are, respec-

tively,

ut=y* (2.27)
ut =524 +25 Iny* (2.28a)

or the more generally accepted expression shown by Schlichting”®
u*=55+25Iny* ' '(2.28b)

It is evident from the smooth-wall curve that the viscous damping effect of the wall
extends out to about y*=60. Therefore it is expected that any roughness elements
should also extend to about y*=60 before they completely nullify the viscous influence
of the wall. The mean velocity profile for the beginning of fully rough wall, i.e.

k« =60, gives an asymptote:

ut=-1.325+2.5 Iny”* (2.29)

Thus, if there are no viscosity effects for roughness greater than &« = 60, then the gen-
eral velocity profile beyond the roughness protuberances would be, from dimensional

analysis,

u* = const. + % ln(%) (2.30)

1 1
= t. — — Ink« + — Iny*
cons X n X ny
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so that, from equation(2.29) when K=0.4 and k«= 60, the velocity profile beyond
k« >60 becomes

ut =895 -2.5 Inks + 2.5Iny”* (2.31a)

or, if we consider k« =70 to be the beginning of fully rough regime, following

Schlichting™ we find

ut=8.5-2.5 Inks + 2.5Iny”* (2.31b)

which is simply a parallel shift of the logarithmic velocity profile for a smooth wall.

2.2 Present Analysis

According to van Driest’s analysis, for a smooth wall the wall effect damps out
exponentially and for a fully rough wall the exponential damping effect of the wall
disappears. To contend with these two limiting cases as well as the transitionally
rough wall case a new roughness parameter C; is introduced into the damping factor

for a smooth wall. The new damping factor is:
1-Cjexp(~y *126) (2.32)

where C; is a function of the roughness Reynolds number k. The proposed univer-

sal constant, mixing length, mean velocity gradient and profile are as follows:

k =K[1-C; exp(-y */26)] (2.33)
= Ky+[1-Cj exp(—y */26)] (2.34)

+
ou” _ 2 (2.35)

+ 2 2
dy 14V 1+4K 5y *[1-C exp(-y *126)]
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+

Y +
w =] 2dy (2.36)
0 1+V1HMKY*[1-C i exp(—y *126)]?

Equation{2.36) for C j=l.0 gives van Driest’s equation(2.16) for the smooth wall
and while for C;=0.0 van Driest’s equation(2.22) for the beginning of a fully rough
wall is recovered. Otherwise C; is related to the roughness Reynolds number and
predicts the turbulence properties for the flow near transitionally rough walls, and is
similar to the van Driest equation(2.26). Consequently the introduction of C; consti-
tutes a new near-wall turbulence model for the flow over smooth, transitionally rough
and the beginning of fully rough walls. For large y* the van Driest velocity profiles

for both smooth and rough walls and the present expression all become

u* = constant + —11%- Iny* (2.37)

which is von Karman’s logarithmic velocity distribution law for fully turbulent flow.

3. RESULTS AND DISCUSSIONS

The calculated results of van Driest’s equations for the mean velocity and Rey-
nolds shear stress are compared with the present results and available experimental
data. The integral equations for the mean velocities are numerically calculated by using |
a Gaussian Quadrature Integration Method3!#2 with 36 points. The functional rela-
tionship between roughness Reynolds number and new roughness parameter C; is

obtained.

Figures 2.1 and Figure 2.2 show semi-logarithmic plots for the mean velocities

with experimental data of Laufer®® for a smooth pipe measured in the fully developed
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turbulent flow regime for two Reynolds numbers (50,000 and 500,000) and rough wall
data of Ligrani and Moffat®* for boundary layer flow on a rough surface. Also
shown are the mean velocity profiles for the smooth, transitionally rough and fully
rough walls from van Driest’s analysis and from the present equation{2.36) with
K=04. ’fhc results of the present theory with C;=1.0 predicts the solution of a
smooth wall eqution (2.16) and that with C;=0.0 predicts that of the beginning of a
fully rough wall, equation(2.22) of van Driest’s theory. For the transitionally rough
wall regime the present results are obtained by comparing C; with the corresponding
roughness Reynolds number k« in equation(2.26) which will yield the same loga-
rithmic law velocity profiles within a 2 % error. As expected, for the two theories the
mean velocities in the logarithmic law region far away from the wall are well matched

with each othér.

Direct comparison of mean velocity profiles in the logarithmic law region
obtained from the present equation(2.36) with those of van Driest’s equation(2.26)
gives the functional relationship between the new roughness parameter C; and rough-
ness Reynolds number &k« as shown in Figure2.3(also Table 2.1). This clearly shows

an inverse relationship given by

ke =60 (1-CP%) (2.38)

Figures 2.4, 2.5 and the 2.6 show the near-wall distributions of the Reynolds
shear stresses calculated from van Driest’s theory and the present theory. Also plot-
ted in the figures are the experimental data of Schubauer® for smooth pipe and boun-
dary layer flows. In the fully turbulent region beyond y*260 the Reynolds shear
stresses calculated from both theories match with experiment for smooth walls. But
very close to the wall the distribution of the shear stresses from van Driest’s analysis

(Figure 2.5) are steeper than those of the present analysis (Figure 2.4). The results of
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C;=1.0 and 0.0 correspond to those of ks =0.0 and 60, respectively.

Figure 2.7 shows the near-wall distributions of the damped universal constant, &
according to van Driest’s analysis, equation(2.23), and the present analysis, equa-
tion(2.33), respectively, for K=0.4. Also shown in the figure is the experimental data
of Ligrani and Moffat®* for boundary layer flow. The introduction of C;, which
corresponds to the roughness Reynolds number kx in the logarithmic law velocity
profile, makes the & near the wall differ from that of van Driest. Near the wall the
present theory overpredicts the experimental data; however, overall trends are the same
since in both cases & decreases near the wall as k« decreases. Away from the wall

all of the theoretical results and experimental data for £ approach 0.4.

In Figures 2.8 and 2.9 the corresponding mixing length from equations(2.24),
(2.34) and turbulent viscosities calculated from equation(2.14) using mean velocity gra-
dients are compared, respectively. Figure 2.8 shows that in the transitionally rough
surfaces, except very close to the wall, the present model produces a little higher mix-
ing length. The same explanation applies to the eddy viscosity shown in the Figure

2.9.

4. CONCLUSIONS

A new damping factor is suggested to predict turbulent flow near transitionally
rough walls. A functional relationship between roughness Reynolds number k.« and a
new roughness parameter C; is obtained. In the logarithmic velocity distribution law
region the modified mean velocity profiles and Reynolds shear stress are consistent

with those of van Driest’s formula.

In the present analysis the roughness parameter C; is shown to be related only to
roughness Reynolds number &«. But the number of parameters describing roughness is

extraordinally large owing to the great diversity of geometric forms. By adjusting C;
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to the logarithmic mean velocity profile via the empirical relationship similar to the
equation(2.38) of any type of surface conditions the new model should permit better

prediction of the mean velocity and the Reynolds-shear stress for the flow near

roughened surfaces.
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Comparison of roughness parameter C; (present theory) and

roughness Reynolds number &+ (van Driest’s theory)

Theoretical Approach
C;- k+

1.0 0

0.77 10

0.52 20

0.33 30

0.195 40

0.0 . 60
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Chapter 3

Computation 1
Algebraic Turbulence Model

1. INTRODUCTION

In the present study a steady state, incompressible, developing turbulent flow in a
circular pipe is selected to evaluate the newly developed algebraic turbulence viscosity
model in Chapter 2. A new roughness/computational parameter C; is introduced into
the damping factor in the algebraic turbulent viscosity v, for the flow near smooth
wall as originated by van Driest’. The new algebraic model is designed to predict the
behavior of the turbulence properties for the flow near smooth, transitionally rough and
fully rough walls. A fully elliptic computational code for the time-averaged Reynolds

momentum equations combined with an algebraic turbulence model is developed.

The discretized governing equations are simultaneously solved for all flow vari-
ables (U,V,P), using a line-by-line marching iterative solution technique, up to 100

pipe diameters downstream for bulk Reynolds numbers 10,000, 50,000 and 500,000.
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The near-wall variations of turbulence properties and their distributions in the fully tur-
bulent region are obtained and compared with available experimental and the calcu-

lated results of the van Driest’s theory.

It is shown that the roughness parameter is inversely proportional to the rough-
ness Reynolds number within a moderate range of the wall roughness. In the near-
wall region the mean velocity and Reynolds shear stress over rough walls are increased
compared with those over smooth walls. In the fully turbulent region the roughness
effect of the wall disappears, so that the roughness on the wall does not affect the dis-

tributions of the Reynolds shear stress.

2. PROBLEM FORMULATION

2.1 Governing Equations and Algebraic Turbulence Model

The fully elliptic time-averaged Reynolds transport equations are written in
cylindrical, axisymmetric coordinates. The following equations are written in nondi-
mensionalized form for a steady, incompressible, two-dimensional turbulent flow. The

flow properties are normalized as follows:

X y i
X:-——-, = -, U:—-—-,
D 4 D uo
V=, P=—£2—, (3.1)
%o pug

where x and y are the horizontal and radial coordinates, i is the mean velocity paral-
lel to the x direction, V' the cross mean velocity in the y direction, p the mean static

pressure, p the density of fluid.
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Continuity Equation;

U 13V _
oX * r or =0 (3.2)

X -Momentum Equation;

U . U _  OP 1 oU
Ux or x| Rep aY[(M V) ox }

1 1 0 oV aU oV
r -Momentum Equation;
aV v _  oP 1 9 oV oU
U " Vor = o T Rey ax | MV TV %
1 19 oV
Rep [r 3 [(1+2 v )r—=— H (3.4)

where the Reynolds number is defined by mean velocity at the pipe inlet uq, pipe

diameter D and kinematic viscosity of fluid v. = The turbulent or eddy viscosity is

defined as

v=—1 1 (3.5)
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with the modified mean velocity gradient

dut _ 2 3.6)
oyt 11K H1-C exp(—y 26))
where
T /PYn
ut= —H y* = _\./_..__9_}_]_. 3.7
V. /p v

and X is the von Karman constant, 0.4, y, normal distance to wall and Cj is a rough-
ness parameter related to the roughness Reynolds number k4« which is defined by

T V, an 1S average roughness size.
\1,,/pk /v, and kg h

2.2 Finite Difference Equations and Computational Grid

The fully elliptic governing partial differential equations (3.2)-(3.4) are discretized
using the finite difference approximation with a first order upwind difference scheme
for convective terms and a second order centered difference scheme for diffusion
terms. In the future the fully second order computations for the convective terms will
be carried out. The staggered grid of the Marker and Cell(MAC) method proposed by
Welch er al.86 is used for the calculation of U,V and P. The discretized grid posi-
tions based on the staggered grid system for the calculation of each flow property are
shown in Figure 3.1. Based on this staggered grid system the continuity equation can
be written using a second order accurate centered difference scheme without interpola-
tion and the pressure can be calculated in the same grid point where the continuity
equation is evaluated. Patankar* discussed the merits of the staggered grid in detail.
The resulting finite difference equations in the nonuniform grid system are written in

Appendix.
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To resolve the large gradient of mean velocities and turbulence properties in the
near-wall region, a nonuniform grid system is used. The positions of the grid system
are carefully determined by modifying an exponentially stretching transformation used
in ARC2D code®’ to generate a finer grid near the wall and the inlet region. In the
fully turbulent region a uniform grid system connected smoothly to the nonuniform
grid system is used. Depending on Reynolds number, the distance to the first grid
point from the wall should be adjusted to get a reliable convergent solution. For Rey-
nolds numbers 50,000 and 500,000 and C; = 0.9 in a 120x50 grid system to get the
grid independent results the typical positions used for the first grid are 0.00004 and
0.0000015 tmes of pipe radius, respectively. This is sufficient to put 14 grid points
within laminar sublayer region(y*<5) and 24 grid points within the buffer region

(y+<40).

2.3 Boundary Conditions

The set of the discretized linear equations are solved numerically for a steady
state, incompressible, two dimensional, developing turbulent pipe flow with uniform

inlet conditions for the mean velocities.

Since an iterative solution technique has been adopted to solve the set of elliptic
governing equations, two boundary conditions, an inlet condition, and an exit condition
are required. The pipe centreline is assumed to be an axis of symmetry. Along the wall
no-slip conditions are enforced for mean velocity components. At the inlet, uniform
values for the mean velocity are specified, i.e. Ug = 1, V= 0 are given along the
radial direction at two axial stations. At the exit, for all flow variables except mean
pressure the axial gradients are to be zero. For mean pressure an arbitrary value is
specified, i.e. P = 1. Due to the staggered grid system and finite difference scheme
used, the inlet and wall conditions are not necessary for the mean pressure. The details

of computational geometry, boundary conditions, inlet conditions and exit conditions
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are shown in Figure 3.2.

3. SOLUTION METHOD

At each grid point the coefficient element sets a 3x3 matrix. The discretized
equation set is solved numerically from the pipe inlet up to 100 pipe diameters down-
stream. After initializing the whole computational domain with the iniet conditions a
block-tridiagonal-coefficient-matrix with 3x3 matrix elements is solved along the radial
coordinate direction from centreline to the wall, line-by-line marching to the down-
stream direction. To invert the block-tridiagonal-matrix an algorithm suggested by

Issaacson and KellerS3 is used.

The turbulent viscosity is evaluated at the same position as P at the end of each
global iteration process for the whole computational domain using the newly obtained

mean velocities. A fully explicit method is used for U,V and P.

Due to the staggered grid and the finite difference scheme used for the continuity
equation the residual of a discretized continuity equation always becomes machine
accuracy 10715 at any stage of the solution procedure thus the convergence is checked
for the Reynolds-averaged momentum equations. In general for a 120x50 grid size
130 iterations are sufficient to give a convergent solution. When the total residual of
the discretized equations becomes less than 107° the iteration process is stopped. The

computational procedure is shown in Figure 3.3.

4. RESULTS AND DISCUSSIONS

In Figure 3.4 the developing axial mean velocity vs x/D for Rep=10,000, 50,000
and 500,000 at r/R=0.0, 0.5, 0.75, 0.94 from the inlet to 100 pipe diameters
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downstream is shown for C;=1.0. Figure 3.4 shows, as expected, that at higher Rey-
nolds numbers the mean velocity distribution across the sectional area are flatter than
for the lower Reynolds numbers. For the same initial conditions the mean velocity of
the lower Reynolds number turbulent flow reaches fully developed conditions faster
than that of the higher Reynolds number turbulent flow. But experimental data for the
axial mean velocity show that fully developed mean velocity profiles do not occur until
more than 40 pipe diameters downstream. Therefore, the algebraic turbulence model
predicts achievement of fully developed flow too fast because the algebraic turbulence
model accounts neither for transport and history effects of turbulence nor‘ for laminar
and transition regions. The results of early development of the mean velocity lead to
the increased flatness of the radial distribution of the fully developed mean velocity as
shown in Figure 3.5. In Figure 3.5 the mean velocity profiles in the fully developed
region, x/D =80, for Rep=500,000 and several C; are compared with the smooth wall
experimental data of Nikuradse® for Rep=380,000. As C; decreases the mean velo-
city in the fully turbulent region, i.e. near centreline region increases while in the
near-wall region it decreases. It shows that the effect of wall roughness reaches the

whole mean velocity field.

From Figure 3.6 to Figure 3.8 for Rep=10,000, 50,000 and 500,000 the loga-
rithmic velocities are demonstrated and from Figure 3.9 to Figure 3.11 the same results
are plotted on linear coordinates. To show the effect of rough walls on the mean
velocity the results of 0.0<C;<1.0 are shown. The present result with C;= 1.0 is
corresponding to that of van Driest’s theory for a smooth wall, i.e. equation(2.16) and
that with C;=0.0 is the beginning of a fully rough wail, i.e. equation(2.22). Other
values of C; are for transitionally rough walls. Except for the wake regions the results
of C;=1.0 compare well with the experimental data of Laufer®® for smooth walls and
the empirical correlations equation(2.27) and (2.28b). The values of the k+ correspond-

ing to C; are obtained by the direct comparisons of the logarithmic mean velocity

profiles in the fully turbulent region calculated from the equation(2.26) of van Driest’s
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theory and are tabulated in Table 3.1.  For the lower Reynolds number flow the slope
of the logarithmic mean velocity profiles deviates from the von Karman’s logarithmic
velocity law for a smooth wall. Therefore for Rep, =10,000 the k« corresponding to

Cj

mental data of Ligrani and Moffat® for boundary layer flow on rough surfaces are

is obtained approximately in the range of 40<y*<100. In Figure 3.8 the experi-

shown. The present result corresponding to k4« of van Driest’s theory predicts a little
higher k« than that of experimental data. But the overall effect of C; being different

from 1.0 results in the shift of the logarithmic velocity profile for the smooth wall.

Figures 3.12, 3.13 and 3.14 demonstrate the near-wall behavior of Reynolds shear
stress. The effect of the wall roughness on the Reynolds shear stress is shown
respectively in Figures 3.12, 3.13, and 3.14 for Rep= 10,000, 50,000 and 5G0,000.
The corresponding roughness Reynolds number k« from the van Driest’s formula and
experimental data of Schubauer®® for the smooth p.ipe and boundary layer flows are
also shown.  The near-wall variation of the Reynolds-stresses is not affected much
by Reynolds number. But as the wall roughness increases a significant increment in
the Reynolds-shear stresses is shown. In the laminar sublayer region (y*<5) the
present calculations with C;=0.8 and 0.9 predict the experimental data for the smooth
surfaces very well. As Reynolds number increases the results in the fully turbulent
region are independent of the roughened wall conditions and the effect of wall rough-
ness is limited to the buffer region. For the higher Reynolds number flow in part of
the buffer region and the fully furbulcnt region the distribution of Reynolds shear
stress is consistent with the experimental data for smooth walls. The present results are
consistent with the Reynolds similarity hypothesis of Townsend®® which means that at

sufficiently high Reynolds number turbulent motion outside the inner layer(up to five

times of the roughness height) is independent of the wall roughness.

Figures 3.15, 3.16 and 3.17 show the distribution of Reynolds shear stresses along
the radial directions for different C;. For the higher Reynolds number flow the effect

of wall roughness is confined to regions very close to the wall. On the contrary to the
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higher Reynolds number flow (Figure 3.17), for the case of lower Reynolds number
turbulent flow (Figure 3.15) the effect of the wall roughness is significant even in
fegions away from the wall. This may be due to ﬁle fact that the strong diffusive
action transfers the effect of the wall conditions further away from the wall at lower
Reynolds numbers. In the fully turbulent flow region the present results compare very

well with the experimental data of Laufer® for smooth walls.

Figure 3.18(also Table 3.1) shows the functional relationship between the rough-
ness Reynolds number %« in equation(2.26) and the roughness parameter C; for
Rep=10,000, 50,000 and 500,000. Also in the Figure the result obtained from the
comparison of theories in Chapter 2 is shown. The logarithmic law velocity profiles
in the fully turbulent region are compared to the resuits of the present algebraic model
and van Driest’s theory. From the numerical simulation of algebraic turbulence

model the empirical functional relationship between . and C; is given by:

L =60 (1-CP%) (3.8)

which is the same relationship as the result obtained in chapter 2.

5. CONCLUSIONS

Based on the present study the following conclusions are obtained.

1) A simultaneous solution technique was used successfully for the Reynolds-

averaged momentum equations combined with a new algebraic turbulence model.

2) By introducing a new roughness parameter C; into the damping factor of the van
Driest’s model for a smooth wall, a new algebraic turbulence model was

obtained and it predicts mean velocity and Reynolds-shear stress for the flow
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near smooth, transitionally rough and fully rough walls. The correlation between
the roughness Reynolds number ks and roughness parameter C; is found and it
is shown that C; is inversely related to &+ within the moderate range of the wall

roughness, i.e. 0.0<kx <60.

In the logarithmic law of the wall region, the overall results obtained show good
agreement with experimental data for the flow near smooth walls. Very close
to the wall the introduction of the new roughness parameter predicts high values
of Reynolds shear stresses compared with the experimental data for smooth

walls.
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Finite difference domain for discretized governing equations
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Figure 3.3 Flow chart for computational procedure
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Table 3.1 Comparison of roughness parameter C; (algebraic turbulence

model) and roughness Reynolds number k: (van Driest’s

theory)
Algebraic Turbulence Model

Rep = 10,000 Rep = 50,000 Rep = 500,000
C; k+ C; k« C; ke
1.0 0 1.0 0 1.0 0
0.9 | 7 | 0.9 7 0.9 5
0.8 10 0.8 10 0.8 10
0.6 20 0.8 19 0.8 18
0.4 30 0.4 30 0.4 28
0.2 40 0.2. 41 0.2 40
0.0 60 0.0 60 0.0 80
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Chapter 4
Computation 2

k - ¢ Low-Reynolds Number
Turbulence Model

1. INTRODUCTION

The development of high-speed computers and new computational methods has
made the computation of more complex mathematical models for fluid flow problems
possible. But some of the well-known and simple flows have served over and over
again as standard test cases for the evaluation of numerical solution procedures and
mathematical models. One benchmark problem is a turbulent pipe flow. Since the
historic dye experiment was first carried out by Reynolds®! there have been many stu-

dies of the turbulent flow in a pipe.
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The roughness effect on a turbulent flow in a pipe is not only of fundamental
interest in fluid dynamics but is also of practical importance. In the earlier experi-
ments sand grain type roughness was employed by Nikuradse®®, Hama%?, and Grass”>.
In experiments in which repeated rib (or groove) roughness configurations were used
the geometrical parameter used to describe the roughness pattern is the roughness ele-
ment spanwise aspect ratio (W/k), where W is the spanwise distance in the cavity
between ribs and & is the height of roughness element. Perry and Joubert®®, Liu, Kline
and Johnston®?, Perry, Schofield and Joubert®®, Antonia and Luxton’’, Wood and
Antonia® studied boundary layer flow over d-type roughness (W/k<1). Ligrani and
Moffat84, Pimenta, Moffat and Kays99, Coleman, Moffat and Kaysmo, Siuru and
Logan101 studied characteristics of boundary layer flow developing over & -type rough-
ness surface (W/k>1). But experimental data for rough surfaces including turbulent
energy and Reynolds-stresses, do not exist in large quantities. Especially scarce are
near-wall data for rough surfaces because of the difficulties in measurement. The
small amount of data obtained are for slightly different flow conditions, such as boun-
dary layer flows®4%2,

of Laufcr83, Schubaucrgs, Nikuradsesg, Barbin and Ionesloz, Lawn103, Richman and

Azadl%,

Experimental data for smooth pipes can be found in the works

In the present study a k-€ low-Reynolds number turbulence model is developed.
The low-Reynolds number turbulence model of Lam and Bremhorst? is modified and
incorporated into the code. =~ The new computational parameter C; and a modelling
constant A~ are introduced into a damping factor within a combined damping function
f . The same test problem as that for the algebraic turbulence model, i.e. a steady
state, incompressible, developing turbulent flow in a pipe, is selected to evaluate the
newly developed numerical code and turbulence model. The simultaneous solution
technique, which was not successful for the k-€ turbulence model, according to several

70,72

researchers’™'#, is successfully used here. All flow properties (U,V,P .k and €) are

solved simultaneously using a line-by-line iterative solution method for distances up to



67

100 pipe diameters downstream for bulk Reynolds numbers of 10,000, 38,000, 50,000,
380,000 and 500,000. The bulk Reynolds number, Rep, is based on the uniform inlet

velocity, ug, the pipe diameter, D, and the kinematic viscosity of fluid, v.

Initially C; is treated as a purely computational parameter. The results show that
with a given set of boundary conditions computations agree well with other numerical
and experimental results for a certain range of C;. Further investigations revealed
that C; has a physical interpretation. It is found that it can serve as a measure of the
wall roughness for a given turbulent flow. This encouraged the comparison with van
Driest’s earlier work’, in which continuous velocity and shear distributions for tur-
bulent flow near smooth and rough walls were studied. An empirical relationship was
eventually developed to relate C; to the roughness Reynolds number k« based on the
friction velocity, u., equivalent sandgrain roughness scale £, and kinematic viscosity
of fluid v. The mean velocities, turbulent kinetic energy, its dissipation rate and the
Reynolds-stresses are demonstrated. Comparisons are méde with the results of van

Driest’s theory and available experimental data for smooth and rough walls.

2. PROBLEM FORMULATION

2.1 Governing Equations

The governing equations are fully elliptic in cylindrical, axisymmetric coordi-
nates. The following equations are written in nondimensionalized form. The flow pro-

perties are normalized with following scales:

v
u

~
]

Ol
&
<
[=]
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(4.2)

(4.3)

(4.4)

(4.5)
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e-Equation;
J€E o€ 1 o MG
—_—t V= = —— (14— ) —
Usx *Vor “ Rep X ”cs)ax]
1 |19 Vi 0t 1 ¢ €2
——| (I+—)r— —_— P, - —_ 4.
Rep [r or {( +Gs)r3r” * Rep kcp‘lf1 e~ Cafs k (4.6)
where the production of turbulent kinetic energy is
‘ U2, ov? vZ2 U  9V.?
Pk—vt[Z[(aX)+(ar)+(r)]+(ar+aX) (47
and the turbulent viscosity and Reynolds number are
k? puoD
=Rep, C f,— , Rep = —— 4.3
v, €p p—fp. . €p n ( )

where C, = 0.09, o, = 1.0, 6; = 1.3, 0g) = 1.44, and 0 = 1.92 as recommended in

reference 19.

2.2 Low-Reynolds Number Turbulence Model

According to Lam and Bremhorst® a damping function f u can be obtained by
using the Hassid-Poreh!% one equation turbulence model employed by Gibson, Spald-

06

ing and Zinser'® in which the turbulent viscosity and the dissipation rate of turbulent

kinetic energy are given by

v, = 0.2274y, K 12(1—¢ 001 13Re) 4.9)
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32 .
E = 04K (1o 00U8Ry 5 v% (4.10)
Yn In

where y, is the normal distance from the wall. Combining equations (4.9) and (4.10)

to eliminate y, the expression for turbulent viscosity v, can be obtained:

_ 0.09 K2 . 0.01180R,,2 VE . ~001189R,\2
Vv, = —2———E—(1—€ ) 1+‘\/1+50 }<—2—(1—€ ) “4.11)

Comparing this with equation (4.8) for C,=0.09 the damping function becomes

_ _,0.01189R; 2 50
fu=0501-e ) 1+\/1+ . (1_e—0-01189Rg)2 4.12)
' !

Lam and Bremhorst suggested the simpler equation

_ -A R, .2 A,

f"l = (1—6 s k) (1+E) (413)
which makes f, a function of both R; and R,. For the fully turbulent region, f, will
tend to unity at large distances from the wall but the R, dependence near the wall is
retained. But for this form of f, asingularity exists at the wall. As the wall is

approached the quantities R, and R, become zero. Therefore the first term in equa-

A
tion(4.13), (l—e_A“R"), becomes zero while the second term, (1+R—t) becomes infinite.
t

But the former one asymptotes to zero faster than the second one approaches infinity,

ie.

li - 4.14
y_rg)fu -0 (4.14)
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The numerical results of Lam and Bremhorst’s model are shown in Figure 4.3 and Fig-
ure 4.4. The disappearance of the damping function f, might cause unrealistic
overshoot of the production term in the equation(4.6) in which the damping function

f11s an inverse function of f .

3
) (4.15)

cl

f ‘1+(A
1= 7.

The other damping function f, is affected indirectly by the turbulence Reynolds

number R, and tends to zero as R, becomes zero.
fa=1-e® (4.16)
The turbulence Reynolds numbers are defined as follows:

K1/2yn K2
R, = , R, =—— 4.1
e Ri= (4.17)

And Lam and Brembhorst obtained the modelling constants by numerical trial and error:

Ay =005, A, =0.0165, A, =205 (4.18)

In spite of the singularity problem with f,, the robustnesses of Lam and
Bremhorst’s model are-demonstrated. The experimental evidence and computational
results from several turbulence models shown in Figure 2 of reference 20(also see Fig-
ure 4.3 in present results) show that although among them the model of Lam and
Bremhorst is best, it still fails to predict the non-zero value of f, at the wall because

of the disappearance of the damping factor at wall.
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2.3 New Computational Parameter ¢; and Modelling Con-
stant A

In the present study a computational parameter C; is introduced into a damping
factor of f,. In addition, an arbitrary constant, Ac, is added to the second term of
fyu- The effects of C; and Ac on the mean axial velocity, the turbulent kinetic energy
and the dissipation rate of turbulent kinetic energy are shown in Figures 4.10, 4.11 and
4.10. A is introduced to ensure the vanishing of v, at the wall. The new damping

function f, is defined as follows:

Fu=[1-Cje™R 1+ Z—C—‘t—Rt-) 4.19)

The damping function f will now vary depending on not only R; and R, but

also C; and Ac, and as the wall is approached, it becomes a non-zero value if C; is
not 1.0. 1In case of C; other than 1.0, for example, with the limit case of C; = 0.0
and Ac=0.1, the second term in equation(4.19) will be 206 at the wall which will
result in the same magnitude for f,. Furthermore, at the first grid point, which is
usually on the order y* =0.5, the magnitude of the second term of f y in equation(4.19)
with C;=0.0 and Ac=0.0 becomes larger than that with C;=0.0 and Ac=0.1. How-
ever at grid points other than the first one the computational results do not show any
significant differences in the value of f,. It is important to show that for C; close to
0.0, a non-zero finite value of [\, at wall does lead to an approximately zero value of
turbulent viscosity even for very small A-. This might be shown in the following
manner. Consider the turbulent eddy viscosity expression shown in equation (4.8) as

written below:

k2
v, =Rep C.f e (4.8)
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At the wall f, is non-zero and finite except where C;=1.0. The quantity C, is
an empirical constant. Analysis of the experimental data® shows that the rate of dissi-
pation of the turbulent kinetic enérgy is non-zero finite at wall and the turbulent kinetic
energy within the laminar sublayer is proportional to the second power of wall dis-

fance:

€ =2(AT2BYy*+.) (4.20)

kt= Aty 2Bty . - 4.21)

where A* and B* are experimental values. Therefore at very small distances from the

wall the turbulent viscosity should be proportional to y™*. Consequently

limv, =0 (4.22)
y—0

The sensitivity of f, and the turbulence properties to the value of C; has been

tested and the results will be demonstrated later.

2.4 Computational Grid and Boundary Conditions

The set of the fully elliptic governing differential equations is solved numerically
for a steady state, incompressible, two dimensional, developing turbulent pipe flow
with uniform inlet conditions for the mean velocities and other turbulence properties.
The low-Reynolds number turbulence model (compared to high-Reynolds number ver-
sions in which wall functions are used to avoid the calculation of laminar sublayer
region) needs a very fine grid hear the wall. To resolve the large gradient of mean
velocities and turbulence properties in the near-wall region, a nonuniform grid system
is essential. The positions of the grid system are carefully determined by modifying

an exponentially stretching transformation used in ARC2D code®” to generate a finer
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grid near the wall and inlet regions. In the fully turbulent region far away from the
wall a uniform grid is used. Most of the results demonstrated are at the fully
developed region i.e. x/D=80. Several fine grid systems are used for the streamwise
direction but the streamwise grid does not affect the fully developed profiles of the
mean variables. Furthermore with the selected streamwise grid system the results in
the developing regions (which are not shown in the present dissertation but may be
found in the study of Jang and Oyibo’®) show reasonable agreement with experimental
data and other numerical results. The grid system in the radial direction is crucial for
resolving the details of the near-wall variation of turbulent properties. Depending on
the Reynolds number, the distance to the first grid point from the wall should be
adjusted to get a reliable convergent solution. In the present study the computation was
very sensitive to the location of the first grid point away from the wall. The slightest
change of the first grid position towards the wall often caused a convergence problem
or a negative turbulent kinetic energy. For Reynolds numbers of 50,000 and 500,000
with C;=0.9 and Ac=0.0 in a 120x50 grid system, grid independent results were
achieved for typical positions of the first grid point of 0.00038 and 0.00004 times the
pipe radius, respectively. This put at least 10 grid points within the laminar sublayer

region(y*<5) and 22 grid points within the buffer region (y*<40).

The boundary conditions for the mean velocities and pressure are the same as for
the cases studied with the algebraic turbulence model. The pipe centreline is assumed
to be an axis of symmetry. Along the wall no-slip conditions are enforced for mean
velocity components and the turbulent kinetic energy is made to vanish there as well.
A symmetry condition is implemented for the dissipation rate of turbulent kinetic
energy. Thus the finite value of the dissipation rate of turbulent kinetic energy at wall
is calculated during the iteration procedures. In the cases of C;<1.0, which are for
rough walls, the effects of wall roughness are accounted for in the transport equations
through the turbulent viscosity which is related to the modified dmaping function f,

while the wall boundary conditions (at y=0) are approximated by smooth wall
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expression. At the inlet, uniform values for the mean velocity and turbulent kinetic
energy are specified, i.e. Ug=1, V=0, k;=0.005 along the radial direction at two axial
stations. For the dissipation rate of turbulent kinetic energy the empirical relation,
go=C ukol'5/O.O3R, is used, where R is the nondimensionalized radius of the pipe. At
the exit for all flow properties, except the mean pressure, fully developed conditions
are specified, i.e. the axial gradient of all flow properties are zero. For mean pressure,
an arbitrary value is specified, i.e. P = 1. The details of the computational geometry,

boundary conditions, inlet conditions and exit conditions are shown in Figure 4.1.

3. SOLUTION METHOD

The solution method and the staggered grid system used in this Chapter are the
same as for the cases studied with the algebraic turbulence model in Chapter 3. The
quantities ¥ and € are calculated at the same grid positions as P. The discretized grid
positions for the calculation of each of the flow properties are shown in Figure 4.2.
The turbulent viscosity is evaluated at the same positions as £ and € at the end of each
global iteration process for the whole computational domain using the newly obtained
mean velocities and turbulence properties. A relaxation method is used for the con-
vergence of k, € and v,. No relaxation technique is used for U,V and P. Typical
relaxation constants are 0.4, 0.4 and 0.3 for k, € and v, respectively. Due to the stag-
gered grid and the finite difference scheme used for the continuity equation, the resi-
dual of a discretized continuity equation always becomes machine accuracy 10713 at
any stage of the solution procedure, the convergence is checked for the Reynolds-
averaged momentum equations, the turbulent kinetic energy equation and the dissipa-
tion rate equation of the turbulent kinetic energy. A series of grid sensitivity runs were
performed on nonuniform grids. Grid independence of the solution was confirmed by

comparing the results for 80x30, 100x40, 120x40 and 120x50 grids. Even though,
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for the fully turbulent region, the results for the 80x40 grid are in good agreement
with experimental data, to assure the grid independence of the near-wall turbulence
prbperties the results of 120x50 are compared with available experimental data. In
general, for C;<0.9 with a proper grid system, 250 iterations are sufficient to give a
convergent solution. But as C; is close to 1.0 the number of iterations are
increased. It took 15.9 CPU seconds for one iteration on the UNIX convex machine.
When the total residual of discretized equations becomes less than 107 the iteration

process is stopped.

4. RESULTS AND DISCUSSIONS

The sensitivity of various turbulence properties to the values of Cj and A- was
tested, motivated by a suggestion of Wilcox'??. The modified low-Reynolds tur-
bulence model with new computational parameters C; and A¢ should properly predict

the behavior of near-wall turbulent flows.

4.1 Sensitivity Test of ¢; and 4.

In Figure 4.3 the smooth wall experimental data and numerical results of other
turbulence models?® for the damping function f y are compared with the results of the
present calculation for C;=0.9, A¢=0.0, and Rep=380,000. The model of Lam and
Bremhorst produces better results than the other turbulence models but fails in the
region very close to the wall. None of the models tested predicts the near-wall varia-
tion of f,, but close examination shows that the present result compares reasonably
with the trend of experimental data, although this is not as marked further out in the

boundary layer.
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A numerical approach to model the near-wall variation of f itself is rare.
Based on the author’s review, one case appears to be the rnodiﬁcation of the van Dri-
est model’ carried out by Miner, Swean, Handler and Leighton!®® using results from
the direct numerical simulation of turbulent channel flow reported by Handler, Hen-
dricks and Leighton!®. By shifting f y upward and adjusting the origin of the wall
coordinate y* Handler er al modified the standard van Driest model to give better

agreement with the result of the direct numerical simulation arriving at the form
fu=fo + (-f )(~exp[-(r*~y§ VALY (4.23)

where 0.04 and 8 are specified for f and the effective origin yJ respectively. Using
the above modified van Driest function with C;=0.115 instead of €';=0.09 the results
for the near-wall turbulence properties near a smooth wall were improved. In Figure
4.4 the empirical data?®, the result of the direct numerical simulation and the result of
the modified van Driest formula are compared with the present results for several
values of C;. The modified van Driest model more closely follows the result of
direct numerical simulaton. But of course it is modelled to fit the result of direct
numerical simulation which is a turbulent channel flow at a low Reynolds number, i.e.
Rep=2,215, where Rep is based on the initial laminar centreline velocity and the half-
with of channel. However equation(4.23) does not include the effect of rough walls.
In the present results, the introduction of two new computational parameters into the
damping function f, is in good agreement with both the trends of experimental data
and the results of the direct numerical simulation. The result for C; =1 and A¢ =0
is the same as that of Lam and Bremhorst’s model. Obviously from Figures 4.3 and
4.4 near the wall the present result with C;=0.9 compares well with experimental data

and the results of the direct numerical simulation.
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Figure 4.5 demonstrates the development of the axial mean velocity. In this Fig-
ure the developing axial mean velocity for Rep=380,000 at different radial positions,
ie. r/R=0.0, 0.5, 0.75, 0.94 from the inlet to 100 pipe .diameter: downstream is shown
and compared with the experimental data of Barbin and Jones!®?. Comparing with
the developing process of mean velocity obtained by using algebraic turbulence model
(see Figure 3.3) the present result shows that the fully developed flow starts around
x/D = 50. The k-& two equation turbulence model is superior to the algebraic tur-
bulence model to predict the developing process of turbulent properties. Except for
the core region and r/R=0.94 the present results, with C; close to 1.0 and A¢ =0,
reproduce the experimental data well. Overall the mean axial velocity is gradually
approaching to the experimental data of Nikuradse®? as shown in Figure 4.7. This is

similar to results obtained with other turbulence models?® shown in references 16, 17

and 18.

In Figures 4.6 and 4.7 the radial distribution of mean velocity are shown for Rep
= 10,000 and 380,000 respectively. The effect of the mean velocity on C; are also
shown together with the experimental data of Nikuradse®® for a smooth pipe. The
present results match with the experiment data. As C; decreases the mean velocities
near the centreline increases while near the wall they decrease. Higher C; gives the
fuller mean velocity profile which is consistent to the result of the algebraic turbulence

model.

In Figures 4.8 and 4.9 the axial variations of the turbulent kinetic energy and tur-
bulent viscosity with C;=0.9, 0.95, and 1.0 are shown for Rep=380,000 at various
radial positions. The results are very sensitive to C;. Different from the developing
process of the mean velocity as the C; increases overall levels of turbulent kinetic

energy and turbulent viscosity decrease regardless to the radial positions.

Figures 4.10, 4.11 and 4.12 show the sensitivity of mean velocity, turbulent

kinetic energy and its dissipation rate on C; and A¢ for Rep=500,000. The results in
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these Figures confirm the independence of mean velocity and turbulence properties
from the values of Ac. The effect of C; to turbulent kinetic energy and its dissipa-

tion rate are discussed in the following Figures.

Figure 4.13 and Figure 4.14 demonstrate the sensitivity of the near-wall behavior
of the turbulent kinetic energy normalized by the friction velocity u, to a wide range
of values of the computational parameter C;. For Rep=50,000 and 500,000 the
‘present results are compared with the empirical correlation, i.e. k*=0.05y*, for the flow
in the laminar sublayer region of smooth walls and several experimental data for
smooth walls, the scatter of which is very wide. It is seen that for the cases for 0.9
<C;< 1.0 k* has the maximum value of 4.5 around y*=15, which is in fair agreement
with the empirical data for smooth walls shown by Patel, er al. 20, In that range, as
C; decreases the turbulent kinetic energy slightly increases and the location of the
maximum value moves closer to the wall. But when C; is less than 0.9 the maximum
value of turbulent kinetic energy decreases and eventually the turning point of tur-
bulent kinetic energy disappears. Away from the wall (y*=100) all the numerical
results asymptote to 3.4 which is close to the 3.3 of the empirical data of Patel et al.
In the range of 0.0 <C;< 0.2 the turbulent kinetic energy is not sensitive to C; over
the entire cross-sectional area of pipe. Figure 4.15 shows the results of smooth

walls(C;=1.0) for various Rep, which are in fair agreement with experimental data.

In Figure 4.16 and Figure 4.17 the variation of turbulent kinetic energy along the
pipe radius for Rep=10,000 and 380,000 are shown with the experimental data of
Lawn!®, In the fully turbulent region the numerical data are not sensitive to the com-
putational parameter C;. Contrary to the higher Reynolds number results, for the
same C; the lower Reynolds number results show that the effect of C; penetrates
farther region from the wall due to the strong diffusion transfer. This is clearly shown
in Figure 4.18 where the results for a smooth wall are plotted for several Reynolds

numbers.
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In Figures 4.19 and 4.20 the variations of the dissipation rate of turbulent kinetic
energy along the pipe radius are demonstrated for Rep = 10,000 and 380,000. For
different C; the dissipation rate of wurbulent kinetic energy in the fully turbulent region
is not affected as can be seen. But in the near wall region the dissipation rate of tur-
bulent kinetic energy is very sensitive to the C;, which has aleady been shown in Fig-
ure 4.12. The present results away from the wall show reasonable agreement with the
smooth wall experimental data of Lawn!%. Figure 4.21 shows the comparisons of the

present results for several Rep with C; = 1.0 and experimental data of Lawn.

4.2 Physical Meaning of C; as a Roughness Function

So far we have demonstrated that the near-wall behavior of turbulence properties
is very sensitive to C; but that the turbulence properties in the fully turbulent region,
except for mean axial velocity, are not affected by C ;- Still it is not clear if the vari-
ations of turbulence properties with respect to C; have any pyhsical significance in
fluid dynamics, and what functional relationship exists between C; and known physical
flow properties. To answer these questions we have to go back to the origin of the

damping factor.

Recalling van Driest’s theory as described in Chapter 2, the flow near transition-

ally rough walls has a mean velocity gradient and profile given by

ou* _ : 2 (2.25)
oyt 14+ 14Ky 1-exp (=y*/26) + exp(—60y 126k« )
¥ 2dy*
ut= | (2.26)
0 1+V1+4K I+ {1-exp (—y*/26) + exp(—60y*/26k+ )]
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Equations (2.25) and (2.26) reduce to the expressions for the smooth wall (equations
(2.15) and (2.16)) and the beginning of fully rough wall (equations (2.21) and (2.22))
if k+ equals 0 and 60, respectively.

For the k-€ two equation approach, the present model with C;=1.0 and A-=0.0
corresponds to the original k-€ turbulence model of Lam and Bremhorst. In Figures
4.22 to 4.25 the variations of u™ with y* as a function of the roughness parameter, C;,
in the semi-logarithmic coordinates and linear coordinates, are compared with van
Driest’s equation(2.26) and the experimental data of Laufer’ for smooth walls
obtained for Rep =50,000 and 500,000 respectively. In Figures 4.22 and 4.23 the
experimental data of Ligrani and Moffat®* for boundary layer flow over a rough sur-
face are shown. The present results' of C;=1.0, which is the same as the original Lam
and Bremhorst’s model, reasonably predict the smooth wall data of Laufer and with
C i = 0.8, the analytic equation(2.22) or equation(2.26) with k« = 60 for the flow near
the beginning of a fully rough wall. The present results corresponding to the k« of
van Driest’s theory predicts a little discrepancy in magnitude but it is shown that the
effect of the wall roughness results in the shift of the logarithmic velocity profile for
the smooth wall. The results for the smooth wall with various Rep are also shown in

Figures 4.26 and 4.27.

One interpretation of the computational parameter C; is clear: it is related to the
roughness Reynolds number, &« and predicts the turbulence properties for the flow
near smooth- transitionally rough- and fully rough walls. Consequently the introduc-
tion of C; suggests a new near-wall turbulence model for the flow over smooth and
rough walls. Therefore we now call the computational parameter C; a roughness
function. As C; decreases from 1.0 the surface of the wall is getting rougher and
rougher, consequently the flow near the wall is stirred up and higher effective wall
shear stress is obtained. The variation of computed friction velocities with respect to

C; for various Reynolds number are shown in Figure 4.28. The friction velocity
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increases as C; decreases, but for C; less than 0.2 the friction velocity does not vary
with C;. Within the moderate range of the wall roughness 0.2<C;<1.0 the damping
factor is still able to predict the turbulence properties very close to the wall, but for the
very rough wall C;<0.2 the effect of the wall damping factor disappears. Recalling
the theoretical approach shown in Chapter 2, where the beginning of fully rough wall
is obtained at k.=60, the present result indicates a much higher roughness Reynolds
number for the beginning of fully rough wall. By simple comparison of the damping
factor between van Driest’s model and the present £-€ model we might expect that the
result of the present calculation with C;=0.0 would be comparable with that of van
Driest’s equation(2.22). But that is inappropriate because the results of the present
k -€ two equation model involve transport and history effects of ¥ and € and the empir-
ical constants which are appeared in the turbulence modelling process are evaluated
differently. In this range of C;<0.2, the wall is so rough that the turbulent phenomena
are expected to get closer to the wall. This should perhaps explain why v, is finite
near the wall(as shown Figure 4.29 and Figure 4.30), while the mathematical form of

the v, gives zero at wall.

In Figure 4.31 the skin friction coefficient vs relative roughness size is compared
with experimental data of Nikuradse®®. The present results are in good agreement with

the experimental data.

Now, from direct comparison of mean velocity profiles in the logarithmic law
region from the present k-€ model with those of van Driest’s theory a functional rela-
tionship between the new roughness parameter and roughness Reynolds number can be
found. As shown in Figure 4.32(also in Table 4.1) linear empirical relationships
between the new roughness parameter C; and roughness Reynolds number k. are

obtained by

for Rep = 50,000
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ke =250-250C; 4.24)
for Rep = 500,000
kv = 200-200C; 4.25)

The relationship between C; and k. gives a different slope depending on the Reynolds

number.

Figures 4.33 and 4.34 demonstrate the dependence of the near-wall behavior of
Reynolds shear stresses for different roughness function C; at Rep= 50,000 and
500,000. Also shown is the Reynolds shear stress of van Driest for the beginning of a
fully rough wall. In the laminar sublayer region the present calculations with C;=0.9
and 0.95 predict the experimental data for smooth walls. The Reynolds shear stresses
are increased by the effect of wall roughness. In the fully turbulent region the distribu-

tion of Reynolds shear stress is consistent with the experimental data for smooth walls.

In Figure 4.35 at a fixed C;, i.e. C;=1.0, it is seen that very close to the wall the
distribution of Reynolds shear stress is not affected by the Reynolds number but in the
fully turbulent region the result of Rep=10,000 deviates from the experimental data.
This is because the k-g turbulence model is modelled with the assumption of high
Reynolds number therefore the empirical constants used in the k-¢€ turbulence model

are obtained from the experimental data of high Reynolds number flows.

Figure 4.36 and Figure 4.37 show the distribution of Reynolds shear stress in the
cross-sectional area for Rep =10,000 and 380,000 and the experimental data of Ligrani
and Moffat®* for boundary layer flow over rough surfaces. Even though the present
result shows discrepancy with the data of Ligrani and Moffat it is seen that the rough-
ness of the wall does not affect the Reynolds shear stress in the fully turbulent regions
and that the present results match with the experimental data of Laufer for a smooth
pipe. In Figure 4.38 the results for smooth walls at various Reynolds numbers are

shown. The numerical results match with the experimental data of Laufer.
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Figures 4.39 and 4.40 show the sensitivities of the ratio of P, to & with C; for

Rep=50,000 and 500,000. Also shown are the empirical data of Patel, et al. These

figures indicate that very close to the wall the rate of increase of the production of tur-

- bulent kinetic energy is faster than that of the dissipation rate of turbulent kinetic

energy, which leads to the increase in the level of turbulence properties in the near-

wall

region. As one approaches the fully turbulent region P, balances with €, sup-

porting the concept of local equilibrium.

3.

1)

2)

3)

CONCLUSIONS

Based on the present study the following conclusions are obtained.

A simultaneous solution technique has been successfully tested for a set of fully
elliptic time-averaged Reynolds transport equations combined with a low-

Re‘ynolds number & -€ two equation turbulence model.

By introducing new computational parametefs C; and A¢ into a damping func-
tion f, the prediction of the experimental curve of f, is recovered. It is found
that the computational parameter C; has a functional relationship to roughness
Reynolds number ks and that C; is inversely proportional to the roughness Rey-

nolds number within the moderate range of the wall roughness.

In the fully turbulent region overall results obtained show good agreement with
experimental data for smooth walls. Very close to the wall the introduction of
the C; less than 1.0 predicts high values of near-wall turbulence properties com-
pared with the experimental data from smooth walls. This high level of tur-
bulence properties is the characteristics of turbulence properties near rough
walls. Due to the higher surface drag on the rough wé.ll the mean velocity
profiles on rough surface become less full than those obtained on a smooth wall.

In the all of the cross sectional ares the mean velocity, different from other
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turbulence properties is sensitive to the C;.

It is concluded that the new damping function f, have the ability to predict the

near-wall turbulence properties on both the smooth and rough walls.
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Table 4.1  Comparison of roughness parameter C; (k-¢ turbulence model)

and roughness Reynolds number £+ (van Driest’s theory)

k - € Turbulence Model
Rep= 500,000 Rep= 50,000
o ks C; ke
1.0 5 1.0 2
.0.95 16 0.95 14
0.9 30 0.9 24
0.8 60 6.8 42
0.7 80 0.7 53
0.6 103 0.6 80
0.5 125 0.5 g6
0.4 150 0.4 114
0.3 178 ‘0.3 137
0.2 196 0.2 152
0.1 198 0.1 158
0.0 200 0.0 158
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Chapter 5

Summary and Conclusions

In this chapter, the results of this dissertation are summarized and the main con-

clusions of the study are outlined.

1. SUMMARY

This dissertation is concerned with modelling of the turbulent flow near smooth

and rough walls.

In Chapter 1, the merits and demerits of turbulence modelling are briefly intro-
duced including near-wall turbulence modelling for the flow near smooth and rough

walls.

In Chapter 2, starting from van Driest’s theory for turbulent flow near a smooth
wall a roughness parameter is introduced into the damping factor of van Driest’s
theory. The range of the new roughness parameter is from 1.0 to 0.0 corresponding to
cases of turbulent flow over hydraulically smooth walls to that over fully rough walls,
consistent with van Driest’s theory. Comparisons of the two theories are carried out for

the universal constant, mixing length, mean velocity and Reynolds shear stress.
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In Chapter 3 the theory developed in Chapter 2 is ;zeriﬁed by testing it in the case
of developing turbulent flow in a pipe. The time-averaged Reynolds momentum
equations are combined with the algebraic turbulence model(eddy viscosity) obtained
in Chapter 2. Using a simultaneous solution method all flow properties are solved,
line-by-line marching, from pipe inlet to exit. The effects of radial variations and
near-wall variations of turbulence properties on the roughness parameter are demon-
strated and compared with the results of van Driest’s theory and available experimental
‘data for the smooth wall. It is found that the new roughness parameter is inversely
related to the roughness Reynolds number. Even though the algebraic turbulence model
is poor at predicting the developing process of the mean velocity field, the numerical

results in the fully developed region are in good agreement with experimental data.

In Chapter 4 the idea of the new damping factor is applied to a more flexible and
popular higher order turbulence model. A low-Reynolds number k-€ two equation
turbulence model of Lam and Brembhorst is modified to account for the effect of rough
surfaces and tested in the case of developing turbulent flow in a pipe. Two computa-
tional parameters C; and Ac are introduced into the damping factor of the damping
function f,. This basically eliminates the singularity problem in the original model
of Lam and Bremhorst and accounts for the near-wall variations of the turbulent flow
on smooth, transitionally rough and fully rough walls. By combining the new damp-
ing factor with the k-€ turbulence model the range of the application for the roughness
on the wall is increased. In the near-wall region the experimental trend of a damping
function f, in the low-Reynolds number turbulence model is recovered by values of
0.8<C;<0.9. In the fully turbulent region overall results obtained show good agreement
with experimental data and are favorably compared with numerical results of other tur-

bulence models.
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CONCLUSIONS

Based on the present results of the theoretical approach for turbulent flow near

smooth and rough walls the following conclusions are obtained:

1)

2)

for a

1)

2)

3)

A new damping factor is suggested to predict turbulent flows near transitionally
rough walls. A functional relationship between roughness Reynolds number

and the new roughness parameter is obtained.

In the logarithmic law region the modified mean velocity profiles and Reynolds

shear stress reproduce those of van Driest’s formula.

Based on the pfesent results of the computation of the algebraic turbulence model

developing turbulent flow in a pipe the following conclusions are obtained:

A simultaneous solution technique was successfully employed for the Reynolds-

averaged momentum equations combined with the algebraic turbulence model.

By introducing a new roughness parameter C; into the damping factor of van
Driest’s model for a smooth wall a new algebraic turbulence model was obtained
which predicts the turbulent flow near smooth, transitionally rough and fully
rough walls. The correlation between the roughness Reynolds number £« and
computational parameter C; was found to be an inverse relationship within a

moderate range of wall roughness.

In the logarithmic region the overall results obtained showed good agreement
with experimental data for flow near smooth walls. Very close to the wall the
introduction of the new roughness function predicts higher values of turbulence
properties compared with the experimental data from smooth walls. It is con-
cluded that the new algebraic turbulence model has the ability to predict the
near-wall mean velocity and Reynolds shear stress on the smooth, transitionally

rough and fully rough walls.
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Based on the present results of the computation using the modified low-Reynolds

number k-£ two equation turbulence model the folowing conclusions are obtained:

1) A simultaneous solution technique was successfully employed for a set of fully
elliptic Reynolds-averaged differential equations combined with a low-Reynolds

number £ -€ two equation turbulence model.

2) By introducing new computational parameter, C; and Ac into a damping func-
tion f the prediction of the experimental curve of f, is irﬁprovcd. It is found
that the computational parameter C; is inversely proportional to the roughness

Reynolds number within moderate range of wall roughness.

3) In the fully turbulent region overall results obtained show good agreement with
experimental data for smooth walls. Very close to the wall the introduction of
the C; predicts higher values of near-wall turbulence properties compared with
the experimental data from smooth walls.  This high level of turbulence pro-
perties is the characteristics of turbulence properties near rough walls. Due to
the higher surface drag on the rough wall the mean velocity profiles on rough

surface are less full than those obtained on a smooth wall.

The functional relationship between C; and k« obtained through the comparisons
of the logarithmic mean velocity profiles calculated from theory, an algebraic tur-
bulence model and a low-Reynolds number & -€ two equation model are shown in Fig-
ure 5.1 and Table 5.1. Over all it shows the linear relationship between C; and kx.
It is concluded that the new damping function f, has the ability to predict the near-

wall turbulence properties on both the smooth and rough walls.

In the present analysis the new roughness parameter C; is shown to be related
only to the roughness Reynolds number k«. But the number of parameters describing
roughness is extraordinarily large owing to the great diversity of geometric forms. By
adjusting C; to the logarithmic mean velocity profile of any type of surface conditions

the new model may be able to predict the turbulent flow near any roughened surfaces.
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The limited comparisons to experimental data over rough walls carried out here are
encouraging, but more detailed verifications must be performed before the utility and

accuracy of the present approach is proven.
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The following finite difference equations are written on the nonuniform grid sys-

tem for the equations(3.2)-(3.4).

Continuity Equation:

dX; r;

j Vis1 — 1V

13

Uij = Ui ja N L[ rviaVia — rViVi,j} ~0

X -Momentum Equation:
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[0, 0012 Uz 00—
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where the operator [A,B] is equivalent to AMAX1(A,B) in the computer
language FORTRAN. The average values are calculated by the linear interpola-

ton from the values in the neighbouning grid positons.

1
Uav = 5(U‘,] + Ui,j—l) (A-4)
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1 J ;
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And the average values for the turbulent viscosity are
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